178 research outputs found

    Expressivity in Natural and Artificial Systems

    Full text link
    Roboticists are trying to replicate animal behavior in artificial systems. Yet, quantitative bounds on capacity of a moving platform (natural or artificial) to express information in the environment are not known. This paper presents a measure for the capacity of motion complexity -- the expressivity -- of articulated platforms (both natural and artificial) and shows that this measure is stagnant and unexpectedly limited in extant robotic systems. This analysis indicates trends in increasing capacity in both internal and external complexity for natural systems while artificial, robotic systems have increased significantly in the capacity of computational (internal) states but remained more or less constant in mechanical (external) state capacity. This work presents a way to analyze trends in animal behavior and shows that robots are not capable of the same multi-faceted behavior in rich, dynamic environments as natural systems.Comment: Rejected from Nature, after review and appeal, July 4, 2018 (submitted May 11, 2018

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    From Artificial Intelligence to Artificial Consciousness: An Interior Design Implication

    Get PDF
    Artificial Intelligence continues to develop rapidly and provokes people to think about Artificial consciousness. Anthropocentric understanding considers consciousness a unique feature of human beings not possessed by other living beings. However, software and hardware development demonstrated the ability to process, analyze, and infer increasingly comprehensive data close to the image of human brain performance. Furthermore, the application of artificial Intelligence to human-friendly objects that can communicate with humans evokes the presence of consciousness within these objects. This paper discusses the presence of artificial consciousness in humanoid robots as an evolutionary continuation of artificial Intelligence. It estimates its implications for architecture, primarily within interior design. Consciousness has a special place in architecture, as it guides Intelligence in engineering and brings it to an abstract level, such as aesthetics. This paper extracts popular information from Internet conversations and theories in pre-existing scientific journals. This paper concludes that the adaptability of both parties and the balance of positions between the two parties in the future will influence the development of interior design approaches that will integrate artificial Intelligence and humans

    The power of affective touch within social robotics

    Get PDF
    There have been many leaps and bounds within social robotics, especially within human-robot interaction and how to make it a more meaningful relationship. This is traditionally accomplished through communicating via vision and sound. It has been shown that humans naturally seek interaction through touch yet the implications on emotions is unknown both in human-human interaction and social human-robot interaction. This thesis unpacks the social robotics community and the research undertaken to show a significant gap in the use of touch as a form of communication. The meaning behind touch will be investigated and what implication it has on emotions. A simplistic prototype was developed focusing on texture and breathing. This was used to carry out experiments to find out which combination of texture and movement felt natural. This proved to be a combination of synthetic fur and 14 breaths per minute. For human’s touch is said to be the most natural way of communicating emotions, this is the first step in achieving successful human-robot interaction in a more natural human-like way
    corecore