15,263 research outputs found

    Improving PWR core simulations by Monte Carlo uncertainty analysis and Bayesian inference

    Full text link
    A Monte Carlo-based Bayesian inference model is applied to the prediction of reactor operation parameters of a PWR nuclear power plant. In this non-perturbative framework, high-dimensional covariance information describing the uncertainty of microscopic nuclear data is combined with measured reactor operation data in order to provide statistically sound, well founded uncertainty estimates of integral parameters, such as the boron letdown curve and the burnup-dependent reactor power distribution. The performance of this methodology is assessed in a blind test approach, where we use measurements of a given reactor cycle to improve the prediction of the subsequent cycle. As it turns out, the resulting improvement of the prediction quality is impressive. In particular, the prediction uncertainty of the boron letdown curve, which is of utmost importance for the planning of the reactor cycle length, can be reduced by one order of magnitude by including the boron concentration measurement information of the previous cycle in the analysis. Additionally, we present first results of non-perturbative nuclear-data updating and show that predictions obtained with the updated libraries are consistent with those induced by Bayesian inference applied directly to the integral observables.Comment: 10 pages, 11 figure

    Global sensitivity analysis of computer models with functional inputs

    Get PDF
    Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are applicable to computer codes with scalar input variables. This paper aims to illustrate different variance-based sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary meta-modeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The ``mean'' model allows to estimate the sensitivity indices of each scalar input variables, while the ``dispersion'' model allows to derive the total sensitivity index of the functional input variables. The proposed approach is compared to some classical SA methodologies on an analytical function. Lastly, the proposed methodology is applied to a concrete industrial computer code that simulates the nuclear fuel irradiation

    QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo

    Get PDF
    We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing accuracy. Advances in real space methods include techniques for accurate computation of band gaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods including GW and density functional based techniques. To provide an improved foundation for these calculations we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK

    Radioactive Decays in Geant4

    Full text link
    The simulation of radioactive decays is a common task in Monte-Carlo systems such as Geant4. Usually, a system either uses an approach focusing on the simulations of every individual decay or an approach which simulates a large number of decays with a focus on correct overall statistics. The radioactive decay package presented in this work permits, for the first time, the use of both methods within the same simulation framework - Geant4. The accuracy of the statistical approach in our new package, RDM-extended, and that of the existing Geant4 per-decay implementation (original RDM), which has also been refactored, are verified against the ENSDF database. The new verified package is beneficial for a wide range of experimental scenarios, as it enables researchers to choose the most appropriate approach for their Geant4-based application

    Comparison of dose estimates using the buildup-factor method and a Baryon transport code (BRYNTRN) with Monte Carlo results

    Get PDF
    Continuing efforts toward validating the buildup factor method and the BRYNTRN code, which use the deterministic approach in solving radiation transport problems and are the candidate engineering tools in space radiation shielding analyses, are presented. A simplified theory of proton buildup factors assuming no neutron coupling is derived to verify a previously chosen form for parameterizing the dose conversion factor that includes the secondary particle buildup effect. Estimates of dose in tissue made by the two deterministic approaches and the Monte Carlo method are intercompared for cases with various thicknesses of shields and various types of proton spectra. The results are found to be in reasonable agreement but with some overestimation by the buildup factor method when the effect of neutron production in the shield is significant. Future improvement to include neutron coupling in the buildup factor theory is suggested to alleviate this shortcoming. Impressive agreement for individual components of doses, such as those from the secondaries and heavy particle recoils, are obtained between BRYNTRN and Monte Carlo results

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Probabilistic structural mechanics research for parallel processing computers

    Get PDF
    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical
    corecore