551 research outputs found

    Generating Optimized Trajectories for Robotic Spray Painting

    Get PDF
    In the manufacturing industry, spray painting is often an important part of the manufacturing process. Especially in the automotive industry, the perceived quality of the final product is closely linked to the exactness and smoothness of the painting process. For complex products or low batch size production, manual spray painting is often used. But in large scale production with a high degree of automation, the painting is usually performed by industrial robots. There is a need to improve and simplify the generation of robot trajectories used in industrial paint booths. A novel method for spray paint optimization is presented, which can be used to smooth out a generated initial trajectory and minimize paint thickness deviations from a target thickness. The smoothed out trajectory is found by solving, using an interior point solver, a continuous non-linear optimization problem. A two-dimensional reference function of the applied paint thickness is selected by fitting a spline function to experimental data. This applicator footprint profile is then projected to the geometry and used as a paint deposition model. After generating an initial trajectory, the position and duration of each trajectory segment are used as optimization variables. The primary goal of the optimization is to obtain a paint applicator trajectory, which would closely match a target paint thickness when executed. The algorithm has been shown to produce satisfactory results on both a simple 2-dimensional test example, and a non-trivial industrial case of painting a tractor fender. The resulting trajectory is also proven feasible to be executed by an industrial robot

    Optimal field coverage path planning on 2D and 3D surfaces

    Get PDF
    With the rapid adoption of automatic guidance systems, automated path planning has great potential to further optimize field operations. Field operations should be done in a manner that minimizes time, travel over field surfaces and is coordinated with specific field operations, machine characteristics and topographical features of arable lands. To reach this goal, intelligent coverage path planning algorithm is key. This dissertation documents our innovative research in optimal field coverage path planning on both 2D and 3D surfaces. To determine the full coverage pattern of a given 2D planar field by using boustrophedon paths, it is necessary to know whether to and how to decompose a field into sub-regions and how to determine the travel direction within each sub-region. A geometric model was developed to represent this coverage path planning problem, and a path planning algorithm was developed based on this geometric model. The search mechanism of the algorithm was guided by a customized cost function resulting from the analysis of different headland turning types and implemented with a divide-and-conquer strategy. The complexity of the algorithm was analyzed, and methods for reducing the computational time were discussed. Field examples with complexity ranging from a simple convex shape to an irregular polygonal shape that has multiple obstacles within its interior were tested with this algorithm. The results were compared with other reported approaches or farmers\u27 actual driving patterns. These results indicated the proposed algorithm was effective in producing optimal field decomposition and coverage path direction in each sub-region. In real world, a great proportion of farms have rolling terrains, which have considerable influences to the design of coverage paths. Coverage path planning in 3D space has a great potential to further optimize field operations. To design optimal coverage paths on 3D terrain surfaces, there were five important steps: terrain modeling and representation, topography impacts analysis, terrain decomposition and classification, coverage cost analysis and the development of optimal path searching algorithm. Each of the topics was investigated in this dissertation research. The developed algorithms and methods were successfully implemented in software and tested with practical 3D terrain farm fields with various topographical features. Each field was decomposed into sub-regions based on terrain features. An optimal seed curve was found for each sub-region and parallel coverage paths were generated by offsetting the seed curve sideways until the whole sub-region was completely covered. Compared with the 2D planning results, the experimental results of 3D coverage path planning showed its superiority in reducing both headland turning cost and soil erosion cost

    Optimisation of surface coverage paths used by a non-contact robot painting system

    Get PDF
    This thesis proposes an efficient path planning technique for a non-contact optical “painting” system that produces surface images by moving a robot mounted laser across objects covered in photographic emulsion. In comparison to traditional 3D planning approaches (e.g. laminar slicing) the proposed algorithm dramatically reduces the overall path length by optimizing (i.e. minimizing) the amounts of movement between robot configurations required to position and orientate the laser. To do this the pixels of the image (i.e. points on the surface of the object) are sequenced using configuration space rather than Cartesian space. This technique extracts data from a CAD model and then calculates the configuration that the five degrees of freedom system needs to assume to expose individual pixels on the surface. The system then uses a closest point analysis on all the major joints to sequence the points and create an efficient path plan for the component. The implementation and testing of the algorithm demonstrates that sequencing points using a configuration based method tends to produce significantly shorter paths than other approaches to the sequencing problem. The path planner was tested with components ranging from simple to complex and the paths generated demonstrated both the versatility and feasibility of the approach

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Visual Techniques for Geological Fieldwork Using Mobile Devices

    Get PDF
    Visual techniques in general and 3D visualisation in particular have seen considerable adoption within the last 30 years in the geosciences and geology. Techniques such as volume visualisation, for analysing subsurface processes, and photo-coloured LiDAR point-based rendering, to digitally explore rock exposures at the earth’s surface, were applied within geology as one of the first adopting branches of science. A large amount of digital, geological surface- and volume data is nowadays available to desktop-based workflows for geological applications such as hydrocarbon reservoir exploration, groundwater modelling, CO2 sequestration and, in the future, geothermal energy planning. On the other hand, the analysis and data collection during fieldwork has yet to embrace this ”digital revolution”: sedimentary logs, geological maps and stratigraphic sketches are still captured in each geologist’s individual fieldbook, and physical rocks samples are still transported to the lab for subsequent analysis. Is this still necessary, or are there extended digital means of data collection and exploration in the field ? Are modern digital interpretation techniques accurate and intuitive enough to relevantly support fieldwork in geology and other geoscience disciplines ? This dissertation aims to address these questions and, by doing so, close the technological gap between geological fieldwork and office workflows in geology. The emergence of mobile devices and their vast array of physical sensors, combined with touch-based user interfaces, high-resolution screens and digital cameras provide a possible digital platform that can be used by field geologists. Their ubiquitous availability increases the chances to adopt digital workflows in the field without additional, expensive equipment. The use of 3D data on mobile devices in the field is furthered by the availability of 3D digital outcrop models and the increasing ease of their acquisition. This dissertation assesses the prospects of adopting 3D visual techniques and mobile devices within field geology. The research of this dissertation uses previously acquired and processed digital outcrop models in the form of textured surfaces from optical remote sensing and photogrammetry. The scientific papers in this thesis present visual techniques and algorithms to map outcrop photographs in the field directly onto the surface models. Automatic mapping allows the projection of photo interpretations of stratigraphy and sedimentary facies on the 3D textured surface while providing the domain expert with simple-touse, intuitive tools for the photo interpretation itself. The developed visual approach, combining insight from all across the computer sciences dealing with visual information, merits into the mobile device Geological Registration and Interpretation Toolset (GRIT) app, which is assessed on an outcrop analogue study of the Saltwick Formation exposed at Whitby, North Yorkshire, UK. Although being applicable to a diversity of study scenarios within petroleum geology and the geosciences, the particular target application of the visual techniques is to easily provide field-based outcrop interpretations for subsequent construction of training images for multiple point statistics reservoir modelling, as envisaged within the VOM2MPS project. Despite the success and applicability of the visual approach, numerous drawbacks and probable future extensions are discussed in the thesis based on the conducted studies. Apart from elaborating on more obvious limitations originating from the use of mobile devices and their limited computing capabilities and sensor accuracies, a major contribution of this thesis is the careful analysis of conceptual drawbacks of established procedures in modelling, representing, constructing and disseminating the available surface geometry. A more mathematically-accurate geometric description of the underlying algebraic surfaces yields improvements and future applications unaddressed within the literature of geology and the computational geosciences to this date. Also, future extensions to the visual techniques proposed in this thesis allow for expanded analysis, 3D exploration and improved geological subsurface modelling in general.publishedVersio

    NASA Tech Briefs, November 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences
    corecore