4,636 research outputs found

    Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = −0.8031; p<0.0001 and ρ = −0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = −0.6557; p = 0.0001 and ρ = −0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = −0.7752; p<0.0001 and ρ = −0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data

    Definition of valid proteomic biomarkers: a bayesian solution

    Get PDF
    Clinical proteomics is suffering from high hopes generated by reports on apparent biomarkers, most of which could not be later substantiated via validation. This has brought into focus the need for improved methods of finding a panel of clearly defined biomarkers. To examine this problem, urinary proteome data was collected from healthy adult males and females, and analysed to find biomarkers that differentiated between genders. We believe that models that incorporate sparsity in terms of variables are desirable for biomarker selection, as proteomics data typically contains a huge number of variables (peptides) and few samples making the selection process potentially unstable. This suggests the application of a two-level hierarchical Bayesian probit regression model for variable selection which assumes a prior that favours sparseness. The classification performance of this method is shown to improve that of the Probabilistic K-Nearest Neighbour model

    Event-Based Modeling with High-Dimensional Imaging Biomarkers for Estimating Spatial Progression of Dementia

    Full text link
    Event-based models (EBM) are a class of disease progression models that can be used to estimate temporal ordering of neuropathological changes from cross-sectional data. Current EBMs only handle scalar biomarkers, such as regional volumes, as inputs. However, regional aggregates are a crude summary of the underlying high-resolution images, potentially limiting the accuracy of EBM. Therefore, we propose a novel method that exploits high-dimensional voxel-wise imaging biomarkers: n-dimensional discriminative EBM (nDEBM). nDEBM is based on an insight that mixture modeling, which is a key element of conventional EBMs, can be replaced by a more scalable semi-supervised support vector machine (SVM) approach. This SVM is used to estimate the degree of abnormality of each region which is then used to obtain subject-specific disease progression patterns. These patterns are in turn used for estimating the mean ordering by fitting a generalized Mallows model. In order to validate the biomarker ordering obtained using nDEBM, we also present a framework for Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics neurodegeneration in brain regions. SImBioTE trains variational auto-encoders (VAE) in different brain regions independently to simulate images at varying stages of disease progression. We also validate nDEBM clinically using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In both experiments, nDEBM using high-dimensional features gave better performance than state-of-the-art EBM methods using regional volume biomarkers. This suggests that nDEBM is a promising approach for disease progression modeling.Comment: IPMI 201

    Urinary proteomics can define distinct diagnostic inflammatory arthritis subgroups

    Get PDF
    Current diagnostic tests applied to inflammatory arthritis lack the necessary specificity to appropriately categorise patients. There is a need for novel approaches to classify patients with these conditions. Herein we explored whether urinary proteomic biomarkers specific for different forms of arthritis (rheumatoid arthritis (RA), psoriatic arthritis (PsA), osteoarthritis (OA)) or chronic inflammatory conditions (inflammatory bowel disease (IBD)) can be identified. Fifty subjects per group with RA, PsA, OA or IBD and 50 healthy controls were included in the study. Two-thirds of these populations were randomly selected to serve as a training set, while the remaining one-third was reserved for validation. Sequential comparison of one group to the other four enabled identification of multiple urinary peptides significantly associated with discrete pathological conditions. Classifiers for the five groups were developed and subsequently tested blind in the validation test set. Upon unblinding, the classifiers demonstrated excellent performance, with an area under the curve between 0.90 and 0.97 per group. Identification of the peptide markers pointed to dysregulation of collagen synthesis and inflammation, but also novel inflammatory markers. We conclude that urinary peptide signatures can reliably differentiate between chronic arthropathies and inflammatory conditions with discrete pathogenesis

    An MRI-Derived Definition of MCI-to-AD Conversion for Long-Term, Automati c Prognosis of MCI Patients

    Get PDF
    Alzheimer's disease (AD) and mild cognitive impairment (MCI), continue to be widely studied. While there is no consensus on whether MCIs actually "convert" to AD, the more important question is not whether MCIs convert, but what is the best such definition. We focus on automatic prognostication, nominally using only a baseline image brain scan, of whether an MCI individual will convert to AD within a multi-year period following the initial clinical visit. This is in fact not a traditional supervised learning problem since, in ADNI, there are no definitive labeled examples of MCI conversion. Prior works have defined MCI subclasses based on whether or not clinical/cognitive scores such as CDR significantly change from baseline. There are concerns with these definitions, however, since e.g. most MCIs (and ADs) do not change from a baseline CDR=0.5, even while physiological changes may be occurring. These works ignore rich phenotypical information in an MCI patient's brain scan and labeled AD and Control examples, in defining conversion. We propose an innovative conversion definition, wherein an MCI patient is declared to be a converter if any of the patient's brain scans (at follow-up visits) are classified "AD" by an (accurately-designed) Control-AD classifier. This novel definition bootstraps the design of a second classifier, specifically trained to predict whether or not MCIs will convert. This second classifier thus predicts whether an AD-Control classifier will predict that a patient has AD. Our results demonstrate this new definition leads not only to much higher prognostic accuracy than by-CDR conversion, but also to subpopulations much more consistent with known AD brain region biomarkers. We also identify key prognostic region biomarkers, essential for accurately discriminating the converter and nonconverter groups

    Urinary proteomics pilot study for biomarker discovery and diagnosis in heart failure with reduced ejection fraction

    Get PDF
    Background Biomarker discovery and new insights into the pathophysiology of heart failure with reduced ejection fraction (HFrEF) may emerge from recent advances in high-throughput urinary proteomics. This could lead to improved diagnosis, risk stratification and management of HFrEF. Methods and Results Urine samples were analyzed by on-line capillary electrophoresis coupled to electrospray ionization micro time-of-flight mass spectrometry (CE-MS) to generate individual urinary proteome profiles. In an initial biomarker discovery cohort, analysis of urinary proteome profiles from 33 HFrEF patients and 29 age- and sex-matched individuals without HFrEF resulted in identification of 103 peptides that were significantly differentially excreted in HFrEF. These 103 peptides were used to establish the support vector machine-based HFrEF classifier HFrEF103. In a subsequent validation cohort, HFrEF103 very accurately (area under the curve, AUC = 0.972) discriminated between HFrEF patients (N = 94, sensitivity = 93.6%) and control individuals with and without impaired renal function and hypertension (N = 552, specificity = 92.9%). Interestingly, HFrEF103 showed low sensitivity (12.6%) in individuals with diastolic left ventricular dysfunction (N = 176). The HFrEF-related peptide biomarkers mainly included fragments of fibrillar type I and III collagen but also, e.g., of fibrinogen beta and alpha-1-antitrypsin. Conclusion CE-MS based urine proteome analysis served as a sensitive tool to determine a vast array of HFrEF-related urinary peptide biomarkers which might help improving our understanding and diagnosis of heart failure

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Urinary proteomics using capillary electrophoresis coupled to mass spectrometry for diagnosis and prognosis in kidney diseases

    Get PDF
    Purpose of review: Urine is the most useful of body fluids for biomarker research. Therefore, we have focused on urinary proteomics, using capillary electrophoresis coupled to mass spectrometry, to investigate kidney diseases in recent years. Recent findings: Several urinary proteomics studies for the detection of various kidney diseases have indicated the potential of this approach aimed at diagnostic and prognostic assessment. Urinary protein biomarkers such as collagen fragments, serum albumin, [alpha]-1-antitrypsin, and uromodulin can help to explain the processes involved during disease progression. Summary: Urinary proteomics has been used in several studies in order to identify and validate biomarkers associated with different kidney diseases. These biomarkers, with improved sensitivity and specificity when compared with the current gold standards, provide a significant alternative for diagnosis and prognosis, as well as improving clinical decision-making

    Urinary CE-MS peptide marker pattern for detection of solid tumors

    Get PDF
    Urinary profiling datasets, previously acquired by capillary electrophoresis coupled to mass-spectrometry were investigated to identify a general urinary marker pattern for detection of solid tumors by targeting common systemic events associated with tumor-related inflammation. A total of 2,055 urinary profiles were analyzed, derived from a) a cancer group of patients (n = 969) with bladder, prostate, and pancreatic cancers, renal cell carcinoma, and cholangiocarcinoma and b) a control group of patients with benign diseases (n = 556), inflammatory diseases (n = 199) and healthy individuals (n = 331). Statistical analysis was conducted in a discovery set of 676 cancer cases and 744 controls. 193 peptides differing at statistically significant levels between cases and controls were selected and combined to a multi-dimensional marker pattern using support vector machine algorithms. Independent validation in a set of 635 patients (293 cancer cases and 342 controls) showed an AUC of 0.82. Inclusion of age as independent variable, significantly increased the AUC value to 0.85. Among the identified peptides were mucins, fibrinogen and collagen fragments. Further studies are planned to assess the pattern value to monitor patients for tumor recurrence. In this proof-of-concept study, a general tumor marker pattern was developed to detect cancer based on shared biomarkers, likely indicative of cancer-related features
    • 

    corecore