41 research outputs found

    Review of Development Stages in the Conceptual Design of an Electro Hydrostatic Actuator for Robotics

    Get PDF
    The design of modern robotic devices faces numerous requirements and limitations which are related to optimization and robustness. Consequently, these stringent requirements have caused improvements in many engineering areas and lead to development of new optimization methods which better handle new complex products designed for application in industrial robots. One of the newly developed methods used in industrial robotics is the concept of a self-contained power device, an Electro-Hydrostatic Actuator (EHA). EHA devices were designed with a central idea, to avoid the possible drawbacks which were present in other types of actuators that are currently used in robotic systems. This paper is a review of the development phases of an EHA device for robotic applications. An overview of the advantages and disadvantages related to current EHA designs are presented, and finally possible ideas for future developments are suggested

    Simulation of an interlocking hydraulic direct-drive system for a biped walking robot

    Get PDF
    Biped robots with serial links driven by an electric motor experience problems because the motor and transmission are installed in each joint, causing the legs to become very heavy. Previous solutions involved robots using servo valves, a type of highly responsive proportional valve. However, high supply pressure is necessary to realize high responsiveness and the resulting energy losses are large. To address this problem, we proposed a hydraulic direct-drive system in which the pump controls the cylinder meter-in flow, while a proportional valve controls the meter-out flow. Furthermore, our hydraulic interlocking drive system connects two hydraulic direct-drive systems for biped humanoid robots and concentrates the pump output on one side cylinder. The meter-in flow rate of the other side cylinder is controlled by the meter-out flow rate of the cylinder on which the pump is concentrated. A comparison of the walking simulation performance with that of the conventional independent system shows that our proposed system reduces the motor output power by 24.3%. These results prove the feasibility of constructing a two-legged robot without having to incorporate highly responsive servo valves

    Design of Lower Legs of Mithra, a High-Performance Backdrivable Humanoid Robot

    Get PDF
    This thesis presents the design of the knee and ankle of Mithra, a new humanoid robot that aims to be an energy-efficient and highly agile machine. Mithra makes use of new optimization metrics for legged robots to develop a system capable of mimicking human movement. A series of low-impedance, high-torque actuator systems were developed with the goal of creating lightweight, powerful, and robust motion. The structure of Mithra\u27s legs mimics the human structure in leg segment length and weight proportions. Detailed design and analysis were conducted in order to allow Mithra to be a robust and maintainable system. Mithra will serve as a human movement controls research platform and is mechanically capable of running at 3 m/s

    Development of a knee prosthesis powered by electro-hydrostatic actuation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Ergonomic dual four-bar linkage knee exoskeleton for stair ascent assistance

    Get PDF
    Introduction: Robotic exoskeletons are emerging technologies that have demonstrated their effectiveness in assisting with Activities of Daily Living. However, kinematic disparities between human and robotic joints can result in misalignment between humans and exoskeletons, leading to discomfort and potential user injuries.Methods: In this paper, we present an ergonomic knee exoskeleton based on a dual four-bar linkage mechanism powered by hydraulic artificial muscles for stair ascent assistance. The device comprises two asymmetric four-bar linkage mechanisms on the medial and lateral sides to accommodate the internal rotation of the knee and address the kinematic discrepancies between these sides. A genetic algorithm was employed to optimize the parameters of the four-bar linkage mechanism to minimize misalignment between human and exoskeleton knee joints. The proposed device was evaluated through two experiments. The first experiment measured the reduction in undesired load due to misalignment, while the second experiment evaluated the device’s effectiveness in assisting stair ascent in a healthy subject.Results: The experimental results indicate that the proposed device has a significantly reduced undesired load compared to the traditional revolute joint, decreasing from 14.15 N and 18.32 N to 1.88 N and 1.07 N on the medial and lateral sides, respectively. Moreover, a substantial reduction in muscle activities during stair ascent was observed, with a 55.94% reduction in surface electromyography signal.Discussion: The reduced undesired load of the proposed dual four-bar linkage mechanism highlights the importance of the adopted asymmetrical design for reduced misalignment and increased comfort. Moreover, the proposed device was effective at reducing the effort required during stair ascent

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF
    corecore