97 research outputs found

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Doctor of Philosophy

    Get PDF
    dissertationData-driven analytics has been successfully utilized in many experience-oriented areas, such as education, business, and medicine. With the profusion of traffic-related data from Internet of Things and development of data mining techniques, data-driven analytics is becoming increasingly popular in the transportation industry. The objective of this research is to explore the application of data-driven analytics in transportation research to improve the traffic management and operations. Three problems in the respective areas of transportation planning, traffic operation, and maintenance management have been addressed in this research, including exploring the impact of dynamic ridesharing system in a multimodal network, quantifying non-recurrent congestion impact on freeway corridors, and developing infrastructure sampling method for efficient maintenance activities. First, the impact of dynamic ridesharing in a multimodal network is studied with agent-based modeling. The competing mechanism between dynamic ridesharing system and public transit is analyzed. The model simulates the interaction between travelers and the environment and emulates travelers' decision making process with the presence of competing modes. The model is applicable to networks with varying demographics. Second, a systematic approach is proposed to quantify Incident-Induced Delay on freeway corridors. There are two particular highlights in the study of non-recurrent congestion quantification: secondary incident identification and K-Nearest Neighbor pattern matching. The proposed methodology is easily transferable to any traffic operation system that has access to sensor data at a corridor level. Lastly, a high-dimensional clustering-based stratified sampling method is developed for infrastructure sampling. The stratification process consists of two components: current condition estimation and high-dimensional cluster analysis. High-dimensional cluster analysis employs Locality-Sensitive Hashing algorithm and spectral sampling. The proposed method is a potentially useful tool for agencies to effectively conduct infrastructure inspection and can be easily adopted for choosing samples containing multiple features. These three examples showcase the application of data-driven analytics in transportation research, which can potentially transform the traffic management mindset into a model of data-driven, sensing, and smart urban systems. The analytic

    Evaluation of Traffic Incident Timeline to Quantify the Performance of Incident Management Strategies

    Get PDF
    Transportation agencies are introducing new strategies and techniques that will improve traffic incident management. Apart from other indicators, agencies measure the performance of the strategies by evaluating the incidents timeline. An effective strategy has to reduce the length of the incident timeline. An incident timeline comprises various stages in the incident management procedure, starting when the incident was detected, and ending when there is the recovery of normal traffic conditions. This thesis addresses three issues that are related to the traffic incident timeline and the incident management strategies. First, co-location of responding agencies has not been investigated as other incident management measures. Co-location of incident responders affects the incident timeline, but there is a scarcity of literature on the magnitude of the effects. Evaluation of the co-location strategy is reflected by the response and verification durations because its effectiveness relies on improving communication between agencies. Investigation of the response and verification duration of incidents, before and after operations of a co-located Traffic Management Center (TMC) is done by using hazard-based models. Results indicate that the incident type, percentage of the lane closure, number of responders, incident severity, detection methods, and day-of-the-week influence the verification duration for both the before- and after- period. Similarly, incident type, lane closure, number of responders, incident severity, time-of-the-day, and detection method influence the response duration for both study periods. The before and after comparison shows significant improvements in the response duration due to co-location of incident response agencies. Second, the incident clearance duration may not necessarily reflect how different types of incidents and various factors affect traffic conditions. The duration at which the incident influences traffic conditions could vary – shorter than the incident duration for some incidents and longer for others. This study introduces a performance measure called incident impact duration and demonstrates a method that was used for estimating it. Also, this study investigated the effects of using incident impact duration compared to the traditionally incident clearance duration in incident modeling. Using hazard-based models, the study analyzed factors that affect the estimated incident impact duration and the incident clearance duration. Results indicate that incident detection methods, the number of responders, Traffic Management Center (TMC) operations, traffic conditions, towing and emergency services influence the duration of an incident. Third, elements of the incident timeline before the clearance duration have been overlooked as factors that influence the clearance duration. Incident elements before the clearance duration include verification time, dispatch duration, and the travel time of responders to the incident scene. This study investigated the influence of incident timeline elements before clearance on the extent of the clearance duration. Also, this study analyzed the impact of other spatial and temporal attributes on the clearance duration. The analysis used a Cox regression model that is estimated using the Least Absolute Shrinkage and Selection Operator (LASSO) penalization method. LASSO enables variable selection from incidents data with a high number of covariates by automatically and simultaneously selecting variables and estimating the coefficients. Results suggest that verification duration, response travel duration, the percentage of lane closure, incident type, the severity of an incident, detection method, and crash location influence the clearance duration

    Interactive, multi-purpose traffic prediction platform using connected vehicles dataset

    Get PDF
    Traffic congestion is a perennial issue because of the increasing traffic demand yet limited budget for maintaining current transportation infrastructure; let alone expanding them. Many congestion management techniques require timely and accurate traffic estimation and prediction. Examples of such techniques include incident management, real-time routing, and providing accurate trip information based on historical data. In this dissertation, a speech-powered traffic prediction platform is proposed, which deploys a new deep learning algorithm for traffic prediction using Connected Vehicles (CV) data. To speed-up traffic forecasting, a Graph Convolution -- Gated Recurrent Unit (GC-GRU) architecture is proposed and analysis of its performance on tabular data is compared to state-of-the-art models. GC-GRU's Mean Absolute Percentage Error (MAPE) was very close to Transformer (3.16 vs 3.12) while achieving the fastest inference time and a six-fold faster training time than Transformer, although Long-Short-Term Memory (LSTM) was the fastest in training. Such improved performance in traffic prediction with a shorter inference time and competitive training time allows the proposed architecture to better cater to real-time applications. This is the first study to demonstrate the advantage of using multiscale approach by combining CV data with conventional sources such as Waze and probe data. CV data was better at detecting short duration, Jam and stand-still incidents and detected them earlier as compared to probe. CV data excelled at detecting minor incidents with a 90 percent detection rate versus 20 percent for probes and detecting them 3 minutes faster. To process the big CV data faster, a new algorithm is proposed to extract the spatial and temporal features from the CSV files into a Multiscale Data Analysis (MDA). The algorithm also leverages Graphics Processing Unit (GPU) using the Nvidia Rapids framework and Dask parallel cluster in Python. The results show a seventy-fold speedup in the data Extract, Transform, Load (ETL) of the CV data for the State of Missouri of an entire day for all the unique CV journeys (reducing the processing time from about 48 hours to 25 minutes). The processed data is then fed into a customized UNet model that learns highlevel traffic features from network-level images to predict large-scale, multi-route, speed and volume of CVs. The accuracy and robustness of the proposed model are evaluated by taking different road types, times of day and image snippets of the developed model and comparable benchmarks. To visually analyze the historical traffic data and the results of the prediction model, an interactive web application powered by speech queries is built to offer accurate and fast insights of traffic performance, and thus, allow for better positioning of traffic control strategies. The product of this dissertation can be seamlessly deployed by transportation authorities to understand and manage congestions in a timely manner.Includes bibliographical references

    Integrated Special Event Traffic Management Strategies in Urban Transportation Network

    Get PDF
    How to effectively optimize and control spreading traffic in urban network during the special event has emerged as one of the critical issues faced by many transportation professionals in the past several decades due to the surging demand and the often limited network capacity. The contribution of this dissertation is to develop a set of integrated mathematical programming models for unconventional traffic management of special events in urban transportation network. Traffic management strategies such as lane reorganization and reversal, turning restriction, lane-based signal timing, ramp closure, and uninterrupted flow intersection will be coordinated and concurrently optimized for best overall system performance. Considering the complexity of the proposed formulations and the concerns of computing efficiency, this study has also developed efficient solution heuristics that can yield sufficiently reliable solutions for real-world application. Case studies and extensive numerical analyses results validate the effectiveness and applicability of the proposed models

    An Integrated Optimal Control System for Emergency Evacuation

    Get PDF
    How to effectively control evacuation traffic has emerged as one of the critical research issues in transportation community, due to the unusually high demand surge and the often limited network capacity. This dissertation has developed an integrated traffic control system for evacuation operations that may require concurrent implementation of different control options, including traffic routing, contraflow operation, staged evacuation, and intersection signal control. The system applies a hierarchical control framework to achieve a trade-off between modeling accuracy and operational efficiency for large-scale network applications. The network-level optimization formulations function to assign traffic to different evacuation corridors, select lane reversal configurations for contraflow operations, and identify the evacuation sequence of different demand zones for staged evacuation. With special constraints to approximate flow interactions at intersections, the formulations have introduced two network enhancement approaches with the aim to capture the real-world operational complexities associated with contraflow operations and staged evacuation. The corridor-level optimization formulations, taking the network-level decisions as input, function to identify the critical control points and generate the optimal signal timings along the major evacuation corridors. The formulations feature the critical intersection concept to reduce the interference of side-street traffic on arterial evacuation flows. This study has also developed an efficient solution method using the Genetic Algorithm based heuristics along with an embedded macroscopic simulator. This dissertation has also proposed a revised cell transmission model that aims to capture the complex temporal and spatial interactions of evacuation traffic flows for both levels of optimization formulations. This model can significantly reduce the size of the optimization problem, and yet preserve the ability in effectively modeling network traffic dynamics. Numerical studies were conducted for each individual control component as well as for the entire integrated control system. The results reveal that the staged evacuation and contraflow strategies generated from the proposed formulations can substantially improve the evacuation efficiency and effectively reduce network congestions. Signal control strategies with the critical intersection concept also outperform the state-of-the-practice evacuation signal plans

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation aims to develop an innovative and improved paradigm for real-time large-scale traffic system estimation and mobility optimization. To fully utilize heterogeneous data sources in a complex spatial environment, this dissertation proposes an integrated and unified estimation-optimization framework capable of interpreting different types of traffic measurements into various decision-making processes. With a particular emphasis on the end-to-end travel time prediction problem, this dissertation proposes an information-theoretic sensor location model that aims to maximize information gains from a set of point, point-to-point and probe sensors in a traffic network. After thoroughly examining a number of possible measures of information gain, this dissertation selects a path travel time prediction uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework. To better measure the quality of service for ransportation systems, this dissertation investigates the path travel time reliability from two perspectives: variability and robustness. Based on calibrated travel disutility functions, the path travel time variability in this research is represented by its standard deviation in addition to the mean travel time. To handle the nonlinear and nonadditive cost functions introduced by the quadratic forms of the standard deviation term, a novel Lagrangian substitution approach is introduced to estimate the lower bound of the most reliable path solution through solving a sequence of standard shortest path problems. To recognize the asymmetrical and heavy-tailed travel time distributions, this dissertation proposes Lagrangian relaxation based iterative search algorithms for finding the absolute and percentile robust shortest paths. Moreover, this research develops a sampling-based method to dynamically construct a proxy objective function in terms of travel time observations from multiple days. Comprehensive numerical experiment results with real-world travel time measurements show that 10-20 iterations of standard shortest path algorithms for the reformulated models can offer a very small relative duality gap of about 2-6%, for both reliability measure models. This broadly-defined research has successfully addressed a number of theoretically challenging and practically important issues for building the next-generation Advanced Traveler Information Systems, and is expected to offer a rich foundation beneficial to the model and algorithmic development of sensor network design, traffic forecasting and personalized navigation

    Multi-Stage Fuzzy Logic Controller for Expressway Traffic Control During Incidents

    Get PDF
    • …
    corecore