45,946 research outputs found

    Focused study on the quiet side effect in dwellings highly exposed to road traffic noise

    Get PDF
    This study provides additional evidence for the positive effect of the presence of a quiet facade at a dwelling and aims at unraveling potential mechanisms. Locations with dominant road traffic noise and high L-den-levels at the most exposed facade were selected. Dwellings both with and without a quiet facade were deliberately sought out. Face-to-face questionnaires (N = 100) were taken to study the influence of the presence of a quiet side in relation to noise annoyance and sleep disturbance. As a direct effect, the absence of a quiet facade in the dwelling (approached as a front-back facade noise level difference smaller than 10 dBA) leads to an important increase of at least moderately annoyed people (odds-ratio adjusted for noise sensitivity equals 3.3). In an indirect way, a bedroom located at the quiet side leads to an even stronger reduction of the self-reported noise annoyance (odds-ratio equal to 10.6 when adjusted for noise sensitivity and front facade L-den). The quiet side effect seems to be especially applicable for noise sensitive persons. A bedroom located at the quiet side also reduces noise-induced sleep disturbances. On a loud side, bedroom windows are more often closed, however, conflicting with the preference of dwellers

    Introducing willingness-to-pay for noise changes into transport appraisal: an application of benefit transfer.

    Get PDF
    Numerous research studies have elicited willingness-to-pay values for transport-related noise, however, in many industrialised countries including the UK, noise costs and benefits are still not incorporated into appraisals for most transport projects and policy changes (Odgaard et al, 2005; Grant-Muller et al, 2001). This paper describes the actions recently taken in the UK to address this issue, comprising: primary research based on the city of Birmingham; an international review of willingness-to-pay evidence; development of values using benefit transfers over time and locations; and integration with appraisal methods. Amongst the main findings are: that the willingness-to-pay estimates derived for the UK are broadly comparable with those used in appraisal elsewhere in Europe; that there is a case for a lower threshold at 1 45dB(A)Leq,18hr1 rather than the more conventional 55dB(A); and that values per dB(A) increase with the noise level above this threshold. There are significant issues over the valuation of rail versus road noise, the neglect of non-residential noise and the valuation of high noise levels in different countries. Conclusions are drawn regarding the feasibility of noise valuation based on benefit transfers in the UK and elsewhere, and future research needs in this field are discussed

    A high resolution spatiotemporal model for in-vehicle black carbon exposure : quantifying the in-vehicle exposure reduction due to the Euro 5 particulate matter standard legislation

    Get PDF
    Several studies have shown that a significant amount of daily air pollution exposure is inhaled during trips. In this study, car drivers assessed their own black carbon exposure under real-life conditions (223 h of data from 2013). The spatiotemporal exposure of the car drivers is modeled using a data science approach, referred to as microscopic land-use regression (mu LUR). In-vehicle exposure is highly dynamical and is strongly related to the local traffic dynamics. An extensive set of potential covariates was used to model the in-vehicle black carbon exposure in a temporal resolution of 10 s. Traffic was retrieved directly from traffic databases and indirectly by attributing the trips through a noise map as an alternative traffic source. Modeling by generalized additive models (GAM) shows non-linear effects for meteorology and diurnal traffic patterns. A fitted diurnal pattern explains indirectly the complex diurnal variability of the exposure due to the non-linear interaction between traffic density and distance to the preceding vehicles. Comparing the strength of direct traffic attribution and indirect noise map-based traffic attribution reveals the potential of noise maps as a proxy for traffic-related air pollution exposure. An external validation, based on a dataset gathered in 2010-2011, quantifies the exposure reduction inside the vehicles at 33% (mean) and 50% (median). The EU PM Euro 5 PM emission standard (in force since 2009) explains the largest part of the discrepancy between the measurement campaign in 2013 and the validation dataset. The mu LUR methodology provides a high resolution, route-sensitive, seasonal and meteorology-sensitive personal exposure estimate for epidemiologists and policy makers

    Comparison of noise indicators in an urban context

    Get PDF
    Inter-Noise 2016, 45th International Congress and Exposition of Noise Control Engineering, HAMBOURG, ALLEMAGNE, 21-/08/2016 - 24/08/2016Noise is a major environmental issue, which gave birth in the last decades to the development of many engineering methods dedicated to both its estimation and mitigation. The specificity of the noise pollution problem lies in the complexity of human hearing and subjective assessment, and in the high spatiotemporal variation and rich spectral content of the noise generated by a wide variety of sources in urban context. Indicators that encompass all these dimensions are required for the description of sound environments and for the evaluation of noise mitigation strategies. This paper compares usual and more specific indicators, dedicated to environmental noise analyses, by means of a literature review. The comparison is based on the three following criteria: i) the ability of indicators to describe and physically categorize the urban sound environments, ii) the relevance of indicators for describing the perceptive appreciations of urban sound environments, iii) the ability of indicators to be estimated through classical or more advanced traffic noise estimation models. A discussion compares the pro and cons of the selected indicators in an operational scop

    The assessment of traffic livability, including local effects at home, during trips and at the destination, based on the individual activity pattern and trip behaviour

    Get PDF
    The environmental quality of the living environment is mainly linked to the direct and indirect impact of traffic in the neighborhood of the dwellings. In the Flemish mobility and urban planning, the term ‘livability’ is used focusing on the living conditions of people’s home location: what is the satisfaction about their living environment? The more specific term ‘traffic livability’ is used to describe the impact of all types of traffic on the livability of a dwelling location. Some methodologies were developed for an objective measurement of the traffic impact on quality of life. In Flanders the most commonly used methodologies are the ‘traffic livability index’ and the ‘bearing capacity’, which use a very narrow interpretation of the traffic livability, as they are highly based on the local road design (number of lanes, cycle path, …) and the local traffic characteristics (traffic flow, speed, traffic safety, …) of the street of the dwelling. The main critic is that these methods should measure over the complete living environment of a person, rather than just at the dwelling. For this reason, an alternative methodology was developed for an objective measurement of the impact of traffic on the local quality of the living environment. Compared to the current practice, this new methodology aims at the following objectives: • The evaluation is not done for the average person, but includes individual needs and travel patterns, based on personal characteristics, representing the large diversity of the mobility needs. • The methodology should reflect a daily activity pattern, including the traveled routes and destinations. The traffic livability of a specific household in a specific area will reflect the full extent of their needs at home, during the trips and at the destinations. • Traffic livability is measured by means of a broad set of indicators, representing different types of traffic impacts (accessibility, traffic noise, traffic emissions, …). The separate indicators are combined into an evaluation of the traffic livability, including an extensive set of secondary effects. This is mainly realized by a better simulation of the personal trip behavior, using the data from the Flemish Trip Behavior Survey. In order to evaluate the livability at a certain home location (a number of) households are sampled from this database, with the specific characteristics of the household (composition, car availability, children, …), the people in the household (age, employment, …) and their activities and trip pattern. With this information, the different indicators for traffic livability can be evaluated on the home location, as well as during the trip and at the destination
    corecore