248 research outputs found

    System for integrated interstitial photodynamic therapy and dosimetric monitoring

    Get PDF
    Photodynamic therapy for the treatment of cancer relies on the presence of light, sensitizer and oxygen. By monitoring these three parameters during the treatment a better understanding and treatment control could possibly be achieved. Here we present data from in vivo treatments of solid skin tumors using an instrument for interstitial photodynamic therapy with integrated dosimetric monitoring. By using intra-tumoral ALA-administration and interstitial light delivery solid tumors are targeted. The same fibers are used for measuring the fluence rate at the treatment wavelength, the sensitizer fluorescence and the local blood oxygen saturation during the treatment. The data presented is based on 10 treatments in 8 patients with thick basal cell carcinomas. The fluence rate measurements at 635 nm indicate a major treatment induced absorption increase, leading to a limited light penetration at the treatment wavelength. This leads to a far from optimal treatment since the absorption increase prevents peripheral tumor regions from being fully treated. An interactive treatment has been implemented assisting the physician in delivering the correct light dose. The absorption increase can be compensated for by either prolonging the treatment time or increasing the output power of each individual treatment fiber. The other parameters of importance, i.e. the sensitizer fluorescence at 705 nm and the local blood oxygen saturation, are monitored in order to get an estimate of the amount of photobleaching and oxygen consumption. Based on the oxygen saturation signal, a fractionized irradiation can be introduced in order to allow for a re-oxygenation of the tissu

    Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements

    Get PDF
    A system for interstitial photodynamic therapy with delta-aminolaevulinic acid and multiple optical fibers has been developed. The system enables photodynamic treatment of large embedded tumor volumes and utilizes real-time measurements to allow on-line dosimetry. Important parameters such as light fluence rate, sensitizer fluorescence intensity, and changes in local blood oxygen saturation are measured with the same fibers that deliver the therapeutic light. Data from the first clinical treatments on nodular basal cell carcinomas indicate a major treatment-induced light absorption increase, rapid sensitizer photo-bleaching, and a relatively constant global tissue oxygen saturation level during the treatment

    The light-oxygen effect in biological cells enhanced by highly localized surface plasmon-polaritons

    Get PDF
    Here at the first time we suggested that the surface plasmon-polariton phenomenon which it is well described in metallic nanostructures could also be used for explanation of the unexpectedly strong oxidative effects of the low-intensity laser irradiation in living matters (cells, tissues, organism). We demonstrated that the narrow-band laser emitting at 1265 nm could generate significant amount of the reactive oxygen species (ROS) in both HCT116 and CHO-K1 cell cultures. Such cellular ROS effects could be explained through the generation of highly localized plasmon-polaritons on the surface of mitochondrial crista. Our experimental conditions, the low-intensity irradiation, the narrow spectrum band (<4 nm) of the laser and comparably small size bio-structures (~10 μm) were shown to be sufficient for the plasmon-polariton generation and strong laser field confinement enabling the oxidative stress observed

    Effect of NASA Light-emitting Diode Irradiation on Wound Healing

    Get PDF
    Objective: The purpose of this study was to assess the effects of hyperbaric oxygen (HBO) and near-infrared light therapy on wound healing. Background Data: Light-emitting diodes (LED), originally developed for NASA plant growth experiments in space show promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. In this paper, we review and present our new data of LED treatment on cells grown in culture, on ischemic and diabetic wounds in rat models, and on acute and chronic wounds in humans. Materials and Methods: In vitro and in vivo (animal and human) studies utilized a variety of LED wavelength, power intensity, and energy density parameters to begin to identify conditions for each biological tissue that are optimal for biostimulation. Results: LED produced in vitro increases of cell growth of 140–200% in mouse-derived fibroblasts, rat-derived osteoblasts, and rat-derived skeletal muscle cells, and increases in growth of 155–171% of normal human epithelial cells. Wound size decreased up to 36% in conjunction with HBO in ischemic rat models. LED produced improvement of greater than 40% in musculoskeletal training injuries in Navy SEAL team members, and decreased wound healing time in crew members aboard a U.S. Naval submarine. LED produced a 47% reduction in pain of children suffering from oral mucositis. Conclusion: We believe that the use of NASA LED for light therapy alone, and in conjunction with hyperbaric oxygen, will greatly enhance the natural wound healing process, and more quickly return the patient to a preinjury/ illness level of activity. This work is supported and managed through the NASA Marshall Space Flight Center–SBIR Program

    A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    Full text link
    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.Comment: 18 pages, 3 tables, 8 figures, 50 reference

    The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Millions of people are diagnosed with non-melanoma skin cancers (NMSC) worldwide each year. While surgical approaches are the standard treatment, some patients are appropriate candidates for radiation therapy for NMSC. High dose rate (HDR) brachytherapy using surface applicators has shown efficacy in the treatment of NMSC and shortens the radiation treatment schedule by using a condensed hypofractionated approach. An electronic brachytherapy (EBT) system permits treatment of NMSC without the use of a radioactive isotope.</p> <p>Methods</p> <p>Data were collected retrospectively from patients treated from July 2009 through March 2010. Pre-treatment biopsy was performed to confirm a malignant cutaneous diagnosis. A CT scan was performed to assess lesion depth for treatment planning, and an appropriate size of surface applicator was selected to provide an acceptable margin. An HDR EBT system delivered a dose of 40.0 Gy in eight fractions twice weekly with 48 hours between fractions, prescribed to a depth of 3-7 mm. Treatment feasibility, acute safety, efficacy outcomes, and cosmetic results were assessed.</p> <p>Results</p> <p>Thirty-seven patients (mean age 72.5 years) with 44 cutaneous malignancies were treated. Of 44 lesions treated, 39 (89%) were T1, 1 (2%) Tis, 1 (2%) T2, and 3 (7%) lesions were recurrent. Lesion locations included the nose for 16 lesions (36.4%), ear 5 (11%), scalp 5 (11%), face 14 (32%), and an extremity for 4 (9%). Median follow-up was 4.1 months. No severe toxicities occurred. Cosmesis ratings were good to excellent for 100% of the lesions at follow-up.</p> <p>Conclusions</p> <p>The early outcomes of EBT for the treatment of NMSC appear to show acceptable acute safety and favorable cosmetic outcomes. Using a hypofractionated approach, EBT provides a convenient treatment schedule.</p

    Production, quality control, biodistribution assessment and preliminary dose evaluation of [177Lu]-tetra phenyl porphyrin complex as a possible therapeutic agent

    Get PDF
    ;Devido às propriedades interessantes do ;177;Lu e da avidez tumoral das tetrafenil porfirinas (TPP), desenvolveu-se a ;177;Lu-tetrafenil porfirina como composto terapêutico potencial. ;177;Lu de atividade específica de 2,6-3 GBq/mg foi obtido por irradiação de amostra de Lu;2;O;3; com fluxo térmico de nêutrons de 4 × 10;13; n.cm;-2;.s;-1;. Sintetizou-se a tetrafenil porfirina e marcou-se com ;177;Lu. A pureza radioquímica do complexo foi estudada usando método de Cromatografia Instantânea de Camada Delgada ( ITLC). A estabilidade do complexo foi checada na formulação final e no ser humano por 48 h. A biodistribuição do composto marcado em órgãos vitais de ratos do tipo selvagem foi estudada por mais de 7 dias. A dose absorvida para cada órgão humano foi calculada pelo método da Dose Médica de Radiação Interna (MIRD). Estudo farmacocinético comparativo detalhado foi efetuado para o cátion ;177;Lu e para o [;177;Lu]-TPP. O complexo foi preparado com pureza radioquímica >;97±1% e atividade específica de 970-1000 MBq/mmol. Os dados de biodistribuição e os resultados dosimétricos mostraram que todos os tecidos receberam uma dose absorvida aproximadamente insignificante devido à rápida excreção do complexo pelo trato urinário. O [;177;Lu]-TPP pode ser um agente interessante de direcionamento do tumor devido à baixa captação pelo fígado e pela dose bem baixa absorvida, de, aproximadamente, 0,036 do corpo humano total.;Due to interesting therapeutic properties of ;177;Lu and tumor avidity of tetraphenyl porphyrins (TPPs), ;177;Lu-tetraphenyl porphyrin was developed as a possible therapeutic compound. ;177;Lu of 2.6-3 GBq/mg specific activity was obtained by irradiation of natural Lu;2;O;3;sample with thermal neutron flux of 4 × 10;13; n.cm;-2;.s;-1;. Tetraphenyl porphyrin was synthetized and labeled with ;177;Lu. Radiochemical purity of the complex was studied using Instant thin layer chromatography (ITLC) method. Stability of the complex was checked in final formulation and human serum for 48 h. The biodistribution of the labeled compound in vital organs of wild-type rats was studied up to 7 d. The absorbed dose of each human organ was calculated by medical internal radiation dose (MIRD) method. A detailed comparative pharmacokinetic study was performed for ;177;Lu cation and [;177;Lu]-TPP. The complex was prepared with a radiochemical purity: &gt;;97±1% and specific activity: 970-1000 MBq/mmol. Biodistribution data and dosimetric results showed that all tissues receive approximately an insignificant absorbed dose due to rapid excretion of the complex through the urinary tract. [;177;Lu]-TPP can be an interesting tumor targeting agent due to low liver uptake and very low absorbed dose of approximately 0.036 to the total body of human

    Photodynamic Therapy utilizing Interstitial Light Delivery Combined with Spectroscopic Methods

    Get PDF
    Since cancer continues to plague humanity there is large need for development of modalities for both diagnosis and therapy. Most of the currently available methods suffer from serious disadvantages. The treatments, e.g. ionising radiation, chemotherapy, surgery, may themselves induce malignancies or the patient may be physically impaired for a longer period of time. The work presented aims at developing equipment and methods that use light for both detection and treatment of various malignant or pre-malignant conditions. Fundamental knowledge on the interaction between light and tissue is required in order to develop models for the light distribution in tissue. Therefore, basic properties of light-tissue interaction, like refractive index, absorption, scattering, and scattering anisotropy, are introduced. How the physiological status of the tissue affects these properties are discussed. Utilizing the differences in the fluorescence spectra emitted by healthy and malignant tissues, when irradiated with visible light, it is possible to detect and delineate certain lesions. The contrast between diseased and healthy tissue can be further enhanced with the use of a fluorescence tumour marker. The evolution of these tumour markers has been fuelled by the fact that many tumour markers also can be utilized for light therapy. The modality is called photodynamic therapy (PDT) and has now been clinically approved for the treatment of several conditions. The possible indications for this type of treatment are generally limited to thin superficial lesions due to the limited penetration of the light in tissue. The work presented in this thesis mainly relates to overcoming the limited light penetration by leading the light through multiple optical fibres inserted into the tumour. In this way both embedded tumour and/or thick tumours could be an indication for this modality. In addition to that the fibres are used to collect information about relevant parameters of therapeutic interest

    Assessing Daylight & Low-Dose Rate Photodynamic Therapy Efficacy, Using Biomarkers of Photophysical, Biochemical and Biological Damage Metrics in Situ.

    Get PDF
    Background Sunlight can activate photodynamic therapy (PDT), and this is a proven strategy to reduce pain caused by conventional PDT treatment, but assessment of this and other alternative low dose rate light sources, and their efficacy, has not been studied in an objective, controlled pre-clinical setting. This study used three objective assays to assess the efficacy of different PDT treatment regimens, using PpIX fluorescence as a photophysical measure, STAT3 cross-linking as a photochemical measure, and keratinocyte damage as a photobiological measure. Methods Nude mouse skin was used along with in vivo measures of photosensitizer fluorescence, keratinocyte nucleus damage from pathology, and STAT3 cross-linking from Western blot analysis. Light sources compared included a low fluence rate red LED panel, compact fluorescent bulbs, halogen bulbs and direct sunlight, as compared to traditional PDT delivery with conventional and fractionated high fluence rate red LED light delivery. Results Of the three biomarkers, two had strong correlation to the PpIX-weighted light dose, which is calculated as the product of the treatment light dose (J/cm2) and the normalized PpIX absorption spectra. Comparison of STAT3 cross-linking to PpIX-weighted light dose had an R = 0.74, and comparison of keratinocyte nuclear damage R = 0.70. There was little correlation to PpIX fluorescence. These assays indicate most of the low fluence rate treatment modalities were as effective as conventional PDT, while fractionated PDT showed the most damage. Conclusions Daylight or artificial light PDT provides an alternative schedule for delivery of drug-light treatment, and this pre-clinical assay demonstrated that in vivo assays of damage could be used to objectively predict a clinical outcome in this altered delivery process. Graphical abstract Low-fluence daylight photodynamic therapy (PDT) has been shown to reduce pain with similar efficacy of conventional treatments. Three objective assays were performed to assess efficacy of different light treatment strategies: PpIX photobleaching, STAT3 crosslinking, and keratinocyte damage. Of these metrics, STAT3 crosslinking and keratinocyte damage showed a strong correlation to the PpIX-weighted light dose
    • …
    corecore