36 research outputs found

    Power Transmission Lines: Worldwide Research Trends

    Get PDF
    The importance of the quality and continuity of electricity supply is increasingly evident given the dependence of the world economy on its daily and instantaneous operation. In turn, the network is made up of power transmission lines. This study has been carried out based on the Scopus database, where all the publications, over 5000 documents, related to the topic of the power transmission lines have been analyzed up to the year 2022. This manuscript aims to highlight the main global research trends in power transmission lines and to detect which are the emerging areas. This manuscript cover three main aspects: First, the main scientific categories of these publications and their temporal trends. Second, the countries and affiliations that contribute to the research and their main research topics. Third, identification of the main trends in the field using the detection of scientific communities by means of the clustering method. The three main scientific categories found were Engineering, Energy and Computer Science. This research is most strongly developed in China, as the top 10 institutions are from this country, followed by USA and in third place by Russia. Twelve lines of research have been detected: Line Inspection, Leakage Current, Magnetic Fields, Fault Location, Icing, Lines Design, Natural Disasters, Temperature, Half-wave, Arc Flash, Pattern Recognition, and Artificial Intelligence. This research will open new perspectives for future research on power transmission lines

    A survey of electromagnetic influence on uavs from an ehv power converter stations and possible countermeasures

    Get PDF
    National Natural Science Foundation of China (Grant Nos. 11872148, U1908217, 61801034).It is inevitable that high-intensity, wide-spectrum electromagnetic emissions are generated by the power electronic equipment of the Extra High Voltage (EHV) power converter station. The surveillance flight of Unmanned Aerial Vehicles (UAVs) is thus, situated in a complex electromagnetic environment. The ubiquitous electromagnetic interference demands higher electromagnetic protection requirements from the UAV construction and operation. This article is related to the UAVs patrol inspections of the power line in the vicinity of the EHV converter station. The article analyzes the electromagnetic interference characteristics of the converter station equipment in the surrounding space and the impact of the electromagnetic emission on the communication circuits of the UAV. The anti-electromagnetic interference countermeasures strive to eliminate or reduce the threats of electromagnetic emissions on the UAV鈥檚 hardware and its communication network.publishersversionpublishe

    An advanced unmanned aerial vehicle (UAV) approach via learning-based control for overhead power line monitoring: a comprehensive review

    Get PDF
    Detection and prevention of faults in overhead electric lines is critical for the reliability and availability of electricity supply. The disadvantages of conventional methods range from cumbersome installations to costly maintenance and from lack of adaptability to hazards for human operators. Thus, transmission inspections based on unmanned aerial vehicles (UAV) have been attracting the attention of researchers since their inception. This article provides a comprehensive review for the development of UAV technologies in the overhead electric power lines patrol process for monitoring and identifying faults, explores its advantages, and realizes the potential of the aforementioned method and how it can be exploited to avoid obstacles, especially when compared with the state-of-the-art mechanical methods. The review focuses on the development of advanced Learning Control strategies for higher manoeuvrability of the quadrotor. It also explores suitable recharging strategies and motor control for improved mission autonomy

    A Vision-Based Broken Strand Detection Method for a Power-Line Maintenance Robot

    Full text link

    A review on the prospects of mobile manipulators for smart maintenance of railway track

    Get PDF
    Inspection and repair interventions play vital roles in the asset management of railways. Autonomous mobile manipulators possess considerable potential to replace humans in many hazardous railway track maintenance tasks with high efficiency. This paper investigates the prospects of the use of mobile manipulators in track maintenance tasks. The current state of railway track inspection and repair technologies is initially reviewed, revealing that very few mobile manipulators are in the railways. Of note, the technologies are analytically scrutinized to ascertain advantages, unique capabilities, and potential use in the deployment of mobile manipulators for inspection and repair tasks across various industries. Most mobile manipulators in maintenance use ground robots, while other applications use aerial, underwater, or space robots. Power transmission lines, the nuclear industry, and space are the most extensive application areas. Clearly, the railways infrastructure managers can benefit from the adaptation of best practices from these diversified designs and their broad deployment, leading to enhanced human safety and optimized asset digitalization. A case study is presented to show the potential use of mobile manipulators in railway track maintenance tasks. Moreover, the benefits of the mobile manipulator are discussed based on previous research. Finally, challenges and requirements are reviewed to provide insights into future research

    Modelling of a protective scheme for AC 330 kV transmission line in Nigeria

    Get PDF
    Transmission lines play a vital role in the reliable and efficient delivery of electrical power over long distances, and these lines are affected by faults that occur due to lightning strikes, equipment failures, human, animal or vegetation interference, environmental factors, ageing equipment, voltage sag or grid faults adverse effects on the line. Therefore, protecting these transmission lines becomes crucial with the increasing demand for electricity and the need to ensure grid stability. The modelling process involves the development of a comprehensive protection scheme utilising modern technologies and advanced algorithms. The protection scheme encompasses various elements, including fault detection, fault classification, fault location, and fault clearance. It incorporates intelligent devices, such as protective relays and communication systems, to enable rapid and accurate fault identification and isolation. First, a 330 kV, 500 km three-phase Delta transmission line is modelled using MATLAB/SIMULINK. A section of the Delta network in Delta State Nigeria was used since the entire Nigeria 330 kV network is large. Faulty current and voltage data were generated for training using the CatBoost, 93340 data sizes comprising fault data from three-phase current and voltage extracted from the Delta transmission line model in Nigeria were designed, and twelve fault conditions were used. The CatBoost classifier was employed to classify the faults after different machine language algorithm was used to train the same data with other parameters. The trainer achieved the best accuracy of 99.54%, with an error of 0.46%, at 748 iterations out of 1000 compared to GBoost, XBoost and other classification techniques. Second, the Artificial Neural Network technique was used to train this data, and an accuracy of 100% was attained for fault detection and about 99.5% for fault localisation at different distances with 0.0017 microseconds of detection and an average error of 0% to 0.5%. This model performs better than Support Vector Machine and Principal Component Analysis with a higher fault detection time. The effect of noise signal on the ANN model was studied, and the discrete wavelet technique was used to de-noise the signal for better performance and to enhance the model鈥檚 accuracy during transient. Third, the wavelet transforms as a data extraction model to detect the threshold value of current and voltage and the coordination time for the backup relay to trip if the primary relay does not operate or clear the fault on time. The difference between the proposed model and the model without the threshold value was analysed. The simulated result shows that the trip time of the two relays demonstrates a fast and precise trip time of 60% to 99.87% compared to other techniques used without the threshold values. The proposed model can eliminate the trial-and-error in programming the instantaneous overcurrent relay setting for optimal performance. Fourth, the PSO-PID controller algorithm was used to moderate the load frequency of the transmission network. Due to the instability between the generation and distribution, there is always a switch in the stability of the transmission or load frequency; therefore, the PSO-PID algorithm was used to stabilise the Delta power station as a pilot survey from the Nigerian transmission network. Also, a hybrid system with five types of generation and two load centres was used in this model. It has been shown that the proposed control algorithm is effective and improves system performance significantly. As a result, the suggested PSO-PID controller is recommended for producing high-quality, dependable electricity. Moreover, the PSO-PID algorithm produces 0.00 seconds settling time and 0.0005757 ITAE. It鈥檚 essential to carefully consider potential drawbacks like complexity and computational overhead, sensitivity to algorithm parameters, potential parameter convergence and limited interpretability and assess their impact on the specific LFC application before implementing a PSO-PID controller in a power system. When implemented with the model in this research, the Delta transmission line network will reduce the excessive fault that occurs in the transmission line and improve the energy efficiency of the entire network when replicated with the Nigerian network. Generally, for the effective design and implementation of the protection scheme of the 330 kV transmission line, the fault must be detected and classified, and the exact location of the fault must be ascertained before the relay protection and load frequency control will be applied for effective fault management and control system

    Outdoor Insulation and Gas Insulated Switchgears

    Get PDF
    This book focuses on theoretical and practical developments in the performance of high-voltage transmission line against atmospheric pollution and icing. Modifications using suitable fillers are also pinpointed to improve silicone rubber insulation materials. Very fast transient overvoltage (VFTO) mitigation techniques, along with some suggestions for reliable partial discharge measurements under DC voltage stresses inside gas-insulated switchgears, are addressed. The application of an inductor-based filter for the protective performance of surge arresters against indirect lightning strikes is also discussed
    corecore