1,932 research outputs found

    Comparing current consistency and electrical resistance of wearable photovoltaic cells pre- and post-laundering and pre- and post-corrosion resistance testing conditions.

    Get PDF
    Photovoltaic(PV) technology is promising due to its natural availability among energy harvesting technologies. There is a growing need for sustainable power sources that can function without being connected to a power source or needing regular battery replacements. Wearable PV cells are gaining popularity in different applications. However, most companies produce wearable PVs for terrestrial applications. Research on wearable PV applications for the marine environment remains limited because these cells suffer from several issues. This research compares commercially sourced wearable PV cells\u27 maximum current consistency and electrical resistance for two testing conditions. The researcher followed standardized methods for these two laundering and corrosion testing conditions. The results revealed that current consistency values decreased over both types\u27 laundering and corrosion testing conditions. However, electrical resistance values showed opposite trends. The findings of this study suggest that wearable PV cells may serve as a reliable source for powering electronic devices in marine environments

    Research on synthetic rope and its future in timber harvesting

    Get PDF
    Steel wire rope is used for many logging applications. It has served the industry well in terms of strength, durability, and longevity. However, steel wire rope is difficult to use because it is stiff, heavy, and unyielding. These characteristics can lead to fatigue and exhaustion, and may contribute to worker injuries. Ultra-high molecular weight polyethylene synthetic rope has the potential to replace steel wire rope for selected logging applications. Research shows ergonomic gains and other operational effectiveness with its use. This paper presents research results, potentials, and issues in improving economic and ergonomic performance of ground-based and cable logging. Potential social and environmental benefits are also discussed. Further training, research and promotion are necessary to put this new technology into the hands of users and assure adoption in the forestry sector

    Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton

    Get PDF
    A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15 %) at 5 km h(-1) and 5 % of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 +/- A 2.49; 8.14 +/- A 2.24 mmol L-1), heart rate (respectively, 190.00 +/- A 6.50; 191.78 +/- A 6.50 bpm), Borg score (respectively, 18.57 +/- A 0.79; 18.93 +/- A 0.73) and peak (respectively, 40.55 +/- A 2.78; 40.55 +/- A 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 +/- A 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities

    Advanced Non-Chemical and Close to Plant Weed Control system for Organic Agriculture

    Get PDF
    Use of chemical has been reduced in agriculture for controlling weeds emergence. The use of alternative systems, such as cultural practices (mulching, flame, intercropping etc.) and mechanical system (hoe, tine etc.) has been introduced by various researchers. Automation technique based on sensors controlled system has enhanced the efficiency of the mechanical system for weed control. Mostly, low cost image acquisition sensors and optical sensor to detect the plant ensuring swift operation of vehicles close the crop plants to remove competitive weeds. The available system need to be evaluated to get best possible system for close to plant (CTP) weed removal. In the study various non-chemical weed control measures has been explored and 30 mechanical tools for CTP were evaluated. High precision tillage solutions and thermal weed control by pulsed lasers for eradication of stem or main shoot were found to be the most promising weed control concepts for CTP operation

    Solar cells inside woven textiles

    Get PDF
    Energy harvesting textiles are a relatively new field of research. In the future our clothes, accessories, and other fabrics could generate electricity from the sun and charge our devices on the go. While photovoltaic yarns, and solar cells printed directly on textiles are technologies of the future, there are already suitable solutions on the market for small scale energy harvesting. Some existing products such as energy harvesting backpacks and jackets already make use of these alternatives but mostly the level of integration of solar cells to the textile is low. The technology remains as a separate part instead of merging into the design and construction of textile. The goal of this practice-based research is to create woven textiles that allow integrating photovoltaics to the functional and aesthetic design of the fabric. The background research aims to introduce the relevant terms and concepts about solar cells for textile design purposes, and paint an overall picture of the future of the photovoltaic textiles field. During the practice-based research part, this knowledge is used for woven material prototyping and testing. The thesis work establishes a design strategy which combines creative material experimentation with backing from applied scientific exploration. Traditional textile design practice is used to develop handwoven material drafts which allow inserting solar cells into the structure of multilayered cloth. To find out how the properties of textiles affect the efficiency of the solar cell, the textile prototypes were tested during several rounds. Solar Cells Inside Woven Textiles is a continuation of an interdisciplinary research project with the New Energy Technologies group from Aalto Engineering Physics Department. The thesis builds on the knowledge generated during the previous process. Because of the collaborative nature of the project, the role of a textile designer in an interdisciplinary research project is addressed. The reflections are based on personal experiences during the process and conversations with design and technology professionals about the subject. This thesis work is positioned on the ground in-between design and science. The final outcome is a collection of woven textile prototypes showcasing the learning and possibilities of designing for photovoltaics integration. Visualization of the collected data allows comparison of different materials, colors and weave structures and provides feedback of the design choices. Using textile design as a tool for scientific exploration may offer tangible proposals for future concepts and research questions. This work serves as one example of working as a designer in a hybrid environment

    Leaf area index and aboveground biomass estimation of Populus and its hybrids using terrestrial LiDAR

    Get PDF
    Short rotation woody crops (SRWC) eastern cottonwood (Populus deltoides) and hybrid poplar plantations were established in 2021 in Pontotoc and Oktibbeha counties of Mississippi to study the biomass potential of SRWC for biofuel production. We used a novel backpack LiDAR system to measure forest metrics and harvested sample trees to build aboveground biomass (AGB) and leaf area index (LAI) equations. The results showed that LiDAR-derived variables accurately estimated aboveground biomass (R2 =0.81 and 29.22 % RMSE). However, the LAI estimation results showed that the LiDAR metrics moderately explained field measurements of LAI (R2 =0.31 and 18.05% RMSE) for individual-trees and poorly explained plot-level LAI measured with the LAI-2200C (R2 =0.11 and 66% RMSE). The backpack LiDAR system can be valuable for forest managers and researchers, enabling non-destructive AGB and LAI estimation. However, further research is required to overcome its limitations and achieve precise measurements of AGB and LAI

    Ultralow Power Energy Harvesting Body Area Network Design: A Case Study

    Get PDF
    Citation: Zheng, C. Y., Kuhn, W. B., & Natarajan, B. (2015). Ultralow Power Energy Harvesting Body Area Network Design: A Case Study. International Journal of Distributed Sensor Networks, 11. doi:10.1155/2015/824705This paper presents an energy harvesting wireless sensor network (EHWSN) architecture designed for use within an astronaut's space suit. The contribution of this work spans both physical (PHY) layer energy harvesting transceiver design and low power medium access control (MAC) solutions. The architecture consists of a star topology with two types of transceiver nodes: a powered gateway radio (GR) node and multiple energy harvesting biosensor radio (BSR) nodes. To demonstrate the feasibility of an EHWSN at the PHY layer, a representative BSR node is implemented. The BSR node is powered by a thermal energy harvesting system (TEHS) which exploits the difference between the temperatures of a space suit's cooling garment and the astronaut's body. It is shown that, through appropriate control of the duty cycle in transmission and receiving modes, it is possible to operate with less than 1 mW generated by the TEHS. This requires ultralow duty cycle which complicates MAC layer design because a BSR node must sleep for more than 99.6% of overall operation time. The challenge for MAC layer design is the inability to predict when the BSR node awakens from sleep mode due to unpredictability of the harvested energy. Therefore, a new feasible MAC layer design, GRI-(gateway radio initialized-) MAC, is proposed and analyzed
    • …
    corecore