512 research outputs found

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Measuring aortic annulus size using a soft robotic balloon catheter

    Get PDF
    Transcatheter aortic valve implantation (TAVI) is a minimally invasive surgical technique to treat aortic heart valve diseases. According to current clinical guidelines, the implanted prosthetic valve replacing the native one is selected based on pre-operative size assessment of the aortic annulus through different imaging techniques. That very often leads to suboptimal device selection resulting in major complications, such as aortic regurgitation and atrioventricular blocks. In this work, we propose a new, intra-operative approach to determine the diameter of the aortic annulus exploiting intra-balloon pressure and volume (p-v) data, acquired from a robotised valvuloplasty balloon catheter. This strategy, combined with current imaging-based sizing methods, would allow to obtain more accurate measurements and check whether the implantation region has changed as a consequence of the valvuloplasty procedure. That would improve TAVI device selection, potentially reducing the occurrence of the aforementioned complications. Two robotic inflation devices, capable of collecting real-time intra-balloon p-v data, were designed and interfaced with a commercially available valvuloplasty balloon catheter. A sizing algorithm that can precisely estimate the annular diameter from acquired p-v data was also implemented. The algorithm relies on a mathematical model of the balloon free inflation and an iterative method based on linear regression. Two different mathematical models of the balloon free inflation, one analytical and one numerical, were developed and compared in terms of sizing accuracy. In vitro tests were performed on idealised aortic phantoms. Experimental results show that pressure-volume data can be used to determine annular diameters bigger than the unstretched diameter of the balloon catheter. This conclusion applies to both rigid and compliant phantoms characterised by a rigidity greater than 100 kPa/%. For these cases, the proposed approach exhibited good precision (maximum average error 1.972%) and good repeatability (maximum standard deviation ±0.263 mm)

    The 26th Annual Boston University Undergraduate Research (UROP) Abstracts

    Full text link
    The file is available to be viewed by anyone in the BU community. To view the file, click on "Login" or the Person icon top-right with your BU Kerberos password. You will then be able to see an option to View.Abstracts for the 2023 UROP Symposium, held at Boston University on October 20, 2023 at GSU Metcalf Ballroom. Cover and logo design by Morgan Danna. Booklet compiled by Molly Power

    Development of a Physical Simulation of the Human Defecatory System for the Investigation of Continence Mechanisms

    Get PDF
    Faecal incontinence is a highly debilitating condition, prevalent across the population worldwide. Coupled with a large unmet need for clinically viable treatment options, a paucity of research into the biomechanics of continence inhibits the development of treatments which address multi-faceted challenges associated with the condition. Consequently, this thesis presents a method to fabricate, measure and control a physical simulation of the human defecatory system to investigate individual and combined effects of anorectal angle and sphincter pressure on continence. To illustrate the capabilities and clinical relevance of the work, the influence of a passive-assistive artificial anal sphincter (FENIX) is evaluated. A model rectum and associated soft tissues, based on geometry from an anonymised computerised tomography dataset, was fabricated from silicone and showed behavioural realism in terms of their morphology to the biological system and ex-vivo tissue. Simulated stool matter with similar rheological properties to human faeces was developed. Instrumentation and control hardware were used to regulate injection of simulated stool into the system, define the anorectal angle and monitor stool flow rate, intra-rectal pressure, anal canal pressure and puborectalis force. Studies were conducted to examine the response of anorectal angles at 80°, 90° and 100° with simulated stool. Tests were then repeated with the inclusion of a FENIX device. Stool leakage was reduced as the anorectal angle became more acute. Conversely, intra-rectal pressure increased. Overall inclusion of the FENIX reduced faecal leakage, while combined effects of the FENIX and an acute anorectal angle showed the greatest resistance to faecal leakage. These data demonstrate that the anorectal angle and sphincter pressure are fundamental in maintaining continence. Furthermore it demonstrates that use of the FENIX can increase resistance to faecal leakage and reduce anorectal angles required to maintain continence. The physical simulation of the defecatory system is an insightful tool to better understand, in a quantitative manner, the effects of the anorectal angle and sphincter pressure on continence. This work is valuable in helping improve our understanding of the physical behaviour of the continence mechanism and facilitating improved technologies to treat severe faecal incontinence

    Estratégias biomiméticas usando a técnica camada-a-camada para aplicações biomédicas e engenharia de tecidos

    Get PDF
    The development of a suitable coating or material, which physico-chemical, mechanical or biological properties, that can be tailored according the features of the target tissue, has been gaining increased importance in biomedical and tissue engineering and regenerative medicine (TERM) fields. Biomimetic strategies have contributed significantly for the progress of biomedical field during the last years. This is possible to be achieved at different levels: imitating Nature form or function and mimicking natural processes and systems are the most used biomimetic approaches. In this thesis, Layer-by-Layer (LbL) methodology was used as a hierarchical biomimetic tool to modify surfaces and to produce freestanding membranes based on polyelectrolyte multilayers (PEMs). The possibility to functionalize or engineer biomaterials combined with the ability to incorporate a wide range of building blocks, makes LbL a powerful processing technique in the biomedical field. Synthetic polymers have been used to construct PEMs for biomedical and TERM applications; however, they lack often on adhesive cues for cell attachment and tissue growth. To overcome such issue, biomimetic synthetic polymers have been developed. Elastin-like polypeptides (ELPs) are a class of nature-inspired polymers, nonimmunogenic, genetically encodable and biocompatible. These materials are based on the repetition of short peptides considered to be building blocks in natural elastin and can include specific bioactive sequences, as the tripeptide Arginine-Glycine-Aspartame (RGD) known by promoting cell adhesion. For the first work of this thesis, ELPs were functionalized with azide and alkyne groups to introduce the reactivity required to carry out the 1,3-dipolar cycloaddition under mild biocompatible conditions, with no toxic by-products and in short reaction times. This reaction was done by means of a LbL assembly, driven by covalent interactions instead of being driven by electrostatic interactions, obtaining a bioactive and biomimetic multilayer coating. Moreover, these polymers are characterized by a critical temperature, known as the transition temperature in aqueous solution (Tt), which is related with a conformational reorganization. Thus, below Tt the polymer chains were soluble in water and above Tt they formed nano- and micro-aggregates becoming insoluble in a reversible process, making these coatings stimuli-responsive. In the following chapters, several polysaccharides as chitosan (CHT), alginate (ALG), hyaluronic acid (HA) or chondroitin sulfate (CS) were used to produce freestanding structured membranes through LbL processes, mainly driven by electrostatic interactions. The use of PEMs containing biopolymers are particularly appealing to coat and develop multilayered structures with biochemical functionalities, biocompatibility, and to mimic the interactions observed in native extracellular matrix (ECM). CHI/CS multilayers were used throughout the thesis, revealing some unique properties, when compared with other polysaccharide-based multilayers, such as their elasticity and degradation rate. However, natural origin polymer-based multilayers present low stiffness and higher hydration rates, which hinder cell adhesion. To overcome this, the CHT/CS multilayers were crosslinked with genipin. This is also a natural product, that is extracted from gardenia fruits and presents the ability to improve the mechanical properties, while preserves the biocompatibility and even enhances the cell adhesive properties. The ability to tailor the multilayers properties can be applied during their assembly or postassembly. Upon adjusting cross-linking parameters (e.g., cross-linker concentration and reaction time) the morphology, thickness, water uptake, rate of biodegradation, mechanical properties and cell adhesive properties can be tuned. Studies of shape-memory of these multilayered films, presented promising results regarding their use in biomedical applications. The mechanical properties of the multilayers can be further improved combining covalent and ionic crosslinking, which gives rise to a full interpenetrating polymer network. More interesting, it was possible to create a well-organized patterned topography at the surface of the freestanding multilayered membrane, just by using a different underlying substrate. This strategy envisaged to mimic the topography of the ECM of some tissues, as bone, skin or nerves, creating grooves on the material’s surface at nanoscale. Using this approach, it was possible to control some cellular functions and behavior as alignment and differentiation. Further in this thesis and inspired by the composition of the adhesive proteins in mussels, freestanding multilayered membranes containing dopamine-modified hyaluronic acid (HA-DN) were produced. The presence of DN along with the thickness of the membranes presented better lap-shear adhesion strength than the control membranes (hyaluronic acid and alginate films – two polysaccharides often regarded as good natural adhesives – were assembled together). Moreover, in vitro tests showed an enhanced cell adhesion for the membranes containing HA-DN and ability to use such kind of membranes for different biomedical and TERM applications, particularly for bone regeneration and skin wound healing. Combining different biomimetic concepts, it was also possible to recreate the complex environment of osteoarthritic articular cartilage by preparing human circular discs of superficially damaged articular cartilage from human samples. Herein, the adhesive freestanding multilayered membranes were used as a vehicle to deliver human adipose stem cells (hASCs) to help to repair the damaged cartilage. hASCs temporarily adhered to the adhesive LbL-based membranes, and were transported to the cartilage discs, creating a bridge of cells between the membranes and the surface of the cartilage. The cells started to migrate into the defects of the cartilage, proliferating and secreting factors capable of repairing the cartilage. Overall, the developed work in this thesis shows that LbL is a very versatile technique that provides the means to develop a wide range of solutions to be useful in biomedical and TERM applications.O desenvolvimento de um revestimento ou material cujas propriedades físicoquímica, mecânicas ou biológicas podem ser modificadas de acordo com as propriedades do tecido alvo, tem ganho cada vez mais importância, nomeadamente para fins biomédicos e de engenharia de tecidos e medicina regenerativa. Durante os últimos anos, diferentes estratégias biomiméticas têm contribuído significativamente para o progresso destas áreas. Estas são possíveis de implementar a diferentes níveis: imitar formas e funções existentes na natureza ou mimetizar processos e sistemas naturais. Na presente tese, a técnica camada-a-camada (LbL) foi usada como uma ferramenta biomimética para modificar superfícies ou produzir membranas com base em múltiplas camadas de polieletrólitos. A crescente utilização desta técnica, concretamente na área biomédica, prende-se com a possibilidade de funcionalizar ou produzir biomateriais aliada à capacidade de incorporar uma gama alargada de blocos de construção. Aqui, diferentes polímeros sintéticos e naturais têm sido usados para construir estruturas multicamada; no entanto, a generalidade dos polímeros sintéticos não apresenta naturalmente locais de ligação e adesão celular. Para contornar este obstáculo, algumas modificações químicas aos polímeros sintéticos têm sido sugeridas e novos compostos têm sido desenvolvidos, inspirados na composição de sistemas naturais. Por exemplo, polipéptidos tipo-elastina (ELPs) são uma classe de polímeros inspirados na natureza, que apresentam propriedades não-imunogénicas e biocompatíveis, podendo ser geneticamente programados conforme desejado. A sua composição baseia-se na repetição de pequenos péptidos também presentes na elastina humana, com a possibilidade também de incorporar outras sequências bioativas especificas, como o tripéptido Arginina-GlicinaÁcido Aspártico (RGD), reconhecido por promover a adesão celular. Para esta tese foram produzidos ELPs, que mais tarde foram funcionalizados com grupos azida e alquino para introduzir a reatividade necessária para uma reação 1,3-dipolar de ciclo-adição se realizar em condições biocompatíveis, sem produtos tóxicos resultantes e em curtos tempos de reação. Esta reação foi realizada sob a técnica LbL, mas conduzida por interações covalentes ao invés de electroestáticas, para atuar como revestimento biomédico. Estes polímeros são ainda reconhecidos pela sua temperatura de transição (Tt) em solução aquosa, relacionada com uma reorganização conformacional da cadeia polimérica. Abaixo da Tt as suas cadeias poliméricas são solúveis, mas acima de Tt formam-se micro-agregados; este é um processo reversível que confere propriedades responsivas aos revestimentos. Nos seguintes capítulos, diferentes polissacarídeos como quitosano (CHT), alginato (ALG), sulfato de condroitina (CS) ou ácido hialurónico (HA), foram usados para produzir membranas multicamadas conduzidas maioritariamente via interações electroestáticas. Esta abordagem tem ganho cada vez mais importância para desenvolver materiais com funcionalidade bioquímica, biocompatibilidade e para mimetizar algumas interações observadas na matriz extracelular (ECM). Ao longo desta tese foram usadas membranas multicamada de CHT/CS; estes materiais revelaram algumas propriedades muito particulares, quando comparadas com outros sistemas de multicamada, como a sua elasticidade e taxas de degradação mais rápidas. No entanto, a baixa rigidez e maiores taxas de hidratação, que muitas vezes impedem a adesão celular, surgem frequentemente associados a sistemas multicamada compostos somente por polissacarídeos. Para contornar este obstáculo, as membranas multicamada de CHT/CS foram reticuladas com genipina. De notar que este composto é de origem natural, sendo extraído da fruta da gardénia; a pós-modificação das membranas com genipina resultou na melhoria das propriedades mecânicas e biocompatibilidade, e ainda, no aumentando das propriedades bio-adesivas. Na realidade, a possibilidade de modular as propriedades destes sistemas multicamada por reticulação química pode ser conseguida logo durante a adsorção de cada camada ou no fim do processo. Características dos biomateriais como a morfologia, espessura, taxas de adsorção de água ou biodegradação, propriedades mecânicas e biológicas podem ser moduladas ajustando certos parâmetros de reticulação (por exemplo, agente de reticulação, concentração ou tempo de reação). Para além do mais, estudos de memória de forma destas membranas multicamada mostraram resultados promissores, considerando o seu uso para fins biomédicos. As propriedades mecânicas destes sistemas foram melhoradas combinando as ligações electroestáticas já existentes com ligações covalentes conferidas pela reticulação química, dando origem a uma rede polimérica multicamada, mas interpenetrada. Na continuação deste trabalho foi possível criar uma topografia com padrão bem organizado na superfície das membranas, alterando somente o material onde efetuamos a deposição das multicamadas. Esta estratégia visou mimetizar a topografia da ECM de diferentes tecidos, como o osso, a pele ou os nervos, criando canais alinhados na superfície do material. Usando este tipo de materiais multicamada padronizados foi possível modular funções e comportamentos celulares como o alinhamento ou a diferenciação. Em seguida, inspirados pela composição das proteínas que conferem adesividade aos mexilhões, foram produzidas membranas multicamada contendo HA modificado com dopamina (DN). A presença de DN ao longo da espessura das membranas multicamada parece ter contribuído para uma melhor e maior força de adesão, quando comparadas com as membranas controlo (membranas multicamada CHT/HA e CHT/ALG). Para além do mais, os testes in vitro resultaram em uma significante melhoria da adesão celular às membranas contendo DN. Esta estratégia mostrou ser promissora para diferentes aplicações biomédicas e de engenharia de tecidos, particularmente para a regeneração de tecido ósseo e a cicatrização de feridas da pele. Combinando diferentes estratégias e conceitos biomiméticos, foi também possível recriar um sistema complexo associado à cartilagem articular e concretamente a doenças como a osteoartrite. Assim sendo, na última parte desta tese, estas membranas multicamada com propriedades adesivas foram utilizadas como veículo para transportar células estaminais humanas do tecido adiposo (hASCs) para o local onde a cartilagem se encontra danificada. A presença deste tipo de células tem sido utilizada como tratamento para cartilagem danificada. Aqui, hASCs aderiram temporariamente às membranas multicamada, e foram assim transportadas diretamente para discos de cartilagem humana danificada, permitindo a criação de uma ponte celular entre as membranas e a superfície da cartilagem. Desta forma, estas células começaram a proliferar na superfície da cartilagem começando a migrar para os defeitos (em profundidade), segregando fatores capazes de ajudar na reparação da cartilagem. No geral, o trabalho desenvolvido para a presente tese mostra a grande versatilidade da técnica LbL, que proporciona os meios necessários para desenvolver uma gama alargada de materiais, estratégias e soluções muito necessárias e promissoras para aplicações biomédicas e de engenharia de tecidos e medicina regenerativa.Programa Doutoral em Químic

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore