44 research outputs found

    Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Get PDF
    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events

    Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars

    Get PDF
    Given the decade long and highly successful Tropical Rainfall Measuring Mission (TRMM), it is now possible to provide quantitative comparisons between ground-based radars (GRs) with the space-borne TRMM precipitation radar (PR) with greater certainty over longer time scales in various tropical climatological regions. This study develops an automated methodology to match and compare simultaneous TRMM PR and GR reflectivities at four primary TRMM Ground Validation (GV) sites: Houston, Texas (HSTN); Melbourne, Florida (MELB); Kwajalein, Republic of the Marshall Islands (KWAJ); and Darwin, Australia (DARW). Data from each instrument are resampled into a three-dimensional Cartesian coordinate system. The horizontal displacement during the PR data resampling is corrected. Comparisons suggest that the PR suffers significant attenuation at lower levels especially in convective rain. The attenuation correction performs quite well for convective rain but appears to slightly over-correct in stratiform rain. The PR and GR observations at HSTN, MELB and KWAJ agree to about 1 dB on average with a few exceptions, while the GR at DARW requires +1 to -5 dB calibration corrections. One of the important findings of this study is that the GR calibration offset is dependent on the reflectivity magnitude. Hence, we propose that the calibration should be carried out using a regression correction, rather than simply adding an offset value to all GR reflectivities. This methodology is developed towards TRMM GV efforts to improve the accuracy of tropical rain estimates, and can also be applied to the proposed Global Precipitation Measurement and other related activities over the globe

    Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Get PDF
    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014

    Falling Snow Estimates from the Global Precipitation Measurement (GPM) Mission

    Get PDF
    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining. This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014, with a specific focus on meeting GPM Mission requirements for falling snow

    Workshop on Strategies for Calibration and Validation of Global Change Measurements

    Get PDF
    The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented

    Aqua: AIRS, AMSU, HSB, AMSR-E, CERES, MODIS

    Get PDF
    This brochure provides an overview of the Aqua spacecraft, instruments, science, and data products Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice. Additional variables also measured by Aqua include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. Note: this guide was produced before Aqua was launched; for the most recent information on Aqua, go to http://aqua.nasa.gov. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education

    Method to combine spaceborne radar and radiometric observations of precipitation, A

    Get PDF
    2010 Fall.Includes bibliographical references.This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties

    Geoinformatic and Hydrologic Analysis using Open Source Data for Floods Management in Pakistan

    Get PDF
    There is being observed high variability in the spatial and temporal rainfall patterns under changing climate, enhancing both the intensity and frequency of the natural disasters like floods. Pakistan, a country which is highly prone to climate change, is recently facing the challenges of both flooding and severe water shortage as the surface water storage capacity is too limited to cope with heavy flows during rainy months. Thus, an effective and timely predication and management of high flows is a dire need to address both flooding and long term water shortage issues. The work of this thesis was aimed at developing and evaluating different open source data based methodologies for floods detection and analysis in Pakistan. Specifically, the research work was conducted for developing and evaluating a hydrologic model being able to run in real time based on satellite rainfall data, as well as to perform flood hazard mapping by analyzing seasonality of flooded areas using MODIS classification approach. In the first phase, TRMM monthly rainfall data (TMPA 3B43) was evaluated for Pakistan by comparison with rain gauge data, as well as by further focusing on its analysis and evaluation for different time periods and climatic zones of Pakistan. In the next phase, TRMM rainfall data and other open source datasets like digital soil map and global land cover map were utilized to develop and evaluate an event-based hydrologic model using HEC-HMS, which may be able to be run in real time for predicting peak flows due to any extreme rainfall event. Finally, to broaden the study canvas from a river catchment to the whole country scale, MODIS automated water bodies classification approach with MODIS daily surface reflectance products was utilized to develop a historical archive of reference water bodies and perform seasonal analysis of flooded areas for Pakistan. The approach was found well capable for its application for floods detection in plain areas of Pakistan. The open source data based hydrologic modeling approach devised in this study can be helpful for conducting similar rainfall-runoff modeling studies for the other river catchments and predicting peak flows at a river catchment scale, particularly in mountainous topography. Similarly, the outcomes of MODIS classification analysis regarding reference and seasonal water and flood hazard maps may be helpful for planning any management interventions in the flood prone areas of Pakistan

    Traceability Model Design and Validation for Precipitation Radar

    Get PDF
    Abstract: The propagating process of data chain of a large instrument is usually indicated by the traceability model. In this paper, to enhance the measurement accuracy of the precipitation radar, we proposed a traceability mode design scheme for the power measurement internal the precipitation radar, which is the key parameter relating to the precipitation measurement. Unlike the conventional internal calibration, we design three additional circuits, including temperature compensation, sectional amplification, auto-calibration power source, according to the traceability model. By introducing three internal detection points, the online soft-calibration data package is obtained by using internal power meters and the environmental sensors. According to the measured power information and the temperature information, the calibration data package provides the online calibration and the attenuation control. Practical internal calibration and real-time online measurement experiments are conducted to validate the design scheme. The experimental results reveal the traceability model design and corresponding soft calibration strategy can improve the reliability of the dynamical measurement data and the dynamical performance of the radar measurement
    corecore