332 research outputs found

    Improving Seaglider Efficiency: An Analysis of Wing Shapes, Hull Morphologies, and Propulsion Methods

    Get PDF
    Autonomous underwater gliders are a family of autonomous underwater vehicles used for long-term observation of oceanic environments. These gliders leverage changes in buoyancy and the resulting vertical motion, to generate forward locomotion via hydrodynamic surfaces. In order to function for extended periods, these systems operate in a low-speed, low-drag regime. This research examines factors impacting the operational efficiencies of gliders, including morphological changes, configuration changes, and propulsion. An interesting question arises when considering the operational efficiencies of conventionally propelled systems at the operating speeds typical of gliders. Can a conventional propulsion system match the efficiency of an underwater glider buoyancy engine? A first-principles, energy-based approach to glider operations was derived and verified using real world data. The energy usage for buoyancy driven propulsion was then compared to conventional propulsion types. The results from these calculations indicate that a conventionally propelled autonomous underwater vehicle can compete with and in some cases outperform a buoyancy driven system given the proper propulsive efficiency

    Simulation Study on a New Hybrid Autonomous Underwater Vehicle with Elevators

    Get PDF
    This study aims to design a new hybrid twin autonomous underwater vehicle (HTAUV) consisting of dual cylinder hulls and analyze its pitching motion. The kinematic model for the HTAUV is established, followed by the execution of hydrodynamic simulation CFD of the HTAUV using Ansys Fluent. These simulations are conducted to obtain the hydrodynamic force equation of the HTAUV, which relates to the deflection angle of the elevator. Through the motion simulation of the HTAUV, under the same net buoyancy condition, notable differences emerge when the elevator is deflected. Specifically, parameters such as gliding speed, gliding angle, and pitch angle of the HTAUV are larger when the elevator is deflected, as compared to cases where no deflection is applied

    Integration of a RSI microstructure sensing package into a Seaglider

    Get PDF
    Seagliders are a type of propeller-less AUV that glide through the water by changing their buoyancy. They have become mainstream collectors of standard oceanographic data (conductivity, temperature, pressure, dissolved oxygen, fluorescence and backscatter) and are increasingly used as trucks to carry a wide variety of hydrographic and bio-geochemical sensors. The extended sensor capability enhances the utility of the gliders for oceanographic observations. Seagliders are designed and optimized for long-term missions (up to 10 months) and deep sea profiling (up to 1000 m). They provide high resolution oceanographic data with very good temporal and spatial density, in near real-time, at a fraction of the cost of ship collected data. These performance parameters are sometimes at odds with the physical dimensions and electrical requirements of the hydrographic and bio-geochemical sensors scientists want installed in gliders. However, as the acceptance of gliders as an integral component of the oceanographic suite of measurement tools grows so do the efforts of sensor vendors to develop products that meet the size, weight and power requirements for successful glider integration. Turbulence microstructure sensors are one measurement system that scientists desired on Seagliders but that until recently did not fit the glider footprint. In collaboration with Rockland Scientific, Inc., a suite of RSI turbulence microstructure sensors was recently integrated into a Seaglider and the system’s performance validated during field tests in Puget Sound near Seattle, WA and in Loch Linnhe on the west coast of Scotland. Ocean turbulence controls the mixing of water masses, biogeochemical fluxes within them, and facilitates ocean-atmosphere gas exchange. As a result, turbulence impacts global ocean circulation, polar ice melt rates, drawdown of atmospheric carbon dioxide and carbon deposition, coastal and deep ocean ecology, commercial fisheries, and the dispersion of pollutants. Turbulent mixing is also recognized as a key parameter in global climate models, used for understanding and predicting future climate change. Seagliders equipped with turbulence microstructure sensors will allow scientists to map the geographical distribution and temporal variability of mixing in the ocean on scales not possible with ship-based measurements. This presentation discusses the technical aspects of the integration of the turbulence sensor suite on a Seaglider with an emphasis on achieving high data quality, while retaining the performance characteristics of the Seaglider. We will also describe applications for this sensor suite, examine the turbulence measurement data already collected by the Seaglider and discuss future deployment plans

    CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results

    Get PDF
    Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD) approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT) Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 10(5) to 10(6) for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach, fabricate the glider and its variable buoyancy engine and test its trajectory in water and compare it with numerically obtained trajectory in the vertical plane. (C) 2017 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

    A revised ocean glider concept to realize Stommel's vision and supplement Argo floats

    Get PDF
    This paper revisits Stommel's vision for a global glider network and the Argo design specification. A concept of floats with wings, so-called slow underwater gliders, is explored. An analysis of the energy or power consumption shows that, by operating gliders with half the vehicle volume at half the speed compared to present gliders, the energy requirements for long-duration missions can be met with available battery capacities. Simulation experiments of slow gliders are conducted using the horizontal current fields from an eddy-permitting ocean reanalysis product. By employing a semi-Lagrangian, streamwise navigation whereby the glider steers at right angles to ocean currents, we show that the concept is feasible. The simulated glider tracks demonstrate the potential for efficient coverage of key oceanographic features and variability.publishedVersio

    Seaglider observations of biogeochemical variability in the Iberian upwelling system.

    Get PDF
    Seasonal upwelling events along the Galician coastline of the North Atlantic furnish the upper watercolumn with nutrients, resulting in strong summer phytoplankton blooms and the sustenance of one of Europe’s largest fisheries. The episodic nature of these upwelling events result in considerable challenges studying the region using traditional shipboard observations. This thesis demonstrates an alternative sampling technique, providing high spatial and temporal resolution biogeochemical data through the use of an autonomous underwater gliderthe Seaglider. SG510 “Orca” was outfitted with sensors to measure dissolved oxygen, temperature, salinity, chlorophyll a (chl a), coloured dissolved organic material (CDOM) and optical backscatter. Deployed for 113 days over summer 2010, Orca completed 17 zonal transects across the shelf, continental slope and open ocean at 42.1° N. Data collected during the campaign was used to assess both the physics of the watercolumn, and the effect these physical processes have on the region’s biogeochemistry. As part of this biogeochemical study, a novel attempt at calculating net community production (NCP) was completed using an oxygen inventory technique. Two major phytoplankton bloom events occurred during the deployment period, with respective peak Chl a concentrations of 9.65 and 11.23 mg m3. During these bloom events, NCP varied between (net autotrophic) values of 25 and 123 (±17 ) mmol m2. d1. Negative values of NCP were only observed twice for 24 and 60 hours respectively, with a maximum heterotrophy of 44 (±17) mmol m2 d1. Overall, the summer season featured a net autotrophic metabolic balance of +27 mmol m2 d1 .thus highlighting the importance of the region for net carbon sequestration. Finally, this thesis also demonstrates the success of using autonomous glider platforms for sustained biogeochemical and physical observations within a highly dynamic and challenging operational environment with strong currents and considerable shipping traffic

    Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    Get PDF
    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV.ISSN:1424-822

    WindBots: A Concept for Persistent In-Situ Science Explorers for Gas Giants

    Get PDF
    This report summarizes the study of a mission concept to Jupiter with one or multiple Wind Robots able to operate in the Jovian atmosphere, above and below the clouds - down to 10 bar, for long durations and using energy obtained from local sources. This concept would be a step towards persistent exploration of gas giants by robots performing in-situ atmospheric science, powered by locally harvested energy. The Wind Robots, referred in this report as WindBots (WBs), would ride the planetary winds and transform aeolian energy into kinetic energy of flight, and electrical energy for on-board equipment. Small shape adjustments modify the aerodynamic characteristics of their surfaces, allowing for changes in direction and a high movement autonomy. Specifically, we sought solutions to increase survivability to strong/turbulent winds, and mobility and autonomy compared to passive balloons

    A New Roll and Pitch Control Mechanism for an Underwater Glider

    Get PDF
    In this paper, a new roll and pitch control mechanism for an underwater glider is described. The mechanism controls the glider’s pitch and roll without the use of a conventional buoyancy engine or movable mass. It uses water as trim mass, with a high flow rate water pump to shift water from water bladders located at the front, rear, left, and right of the glider. By shifting water between the left and right water bladder, a roll moment is induced. Similarly, pitch is achieved by shifting water between the front and rear water bladders. The water bladders act not only as a means for roll and pitch control but as a buoyancy engine as well. This eliminates the use of a dedicated mechanism for pitch and roll, thereby improving gliding efficiency and energy consumption, as the glider's overall size is decreased since the hardware required is reduced. The dynamics of the system were derived and simulated, as well as validated experimentally. The glider is able to move in a sawtooth pattern with a maximum pitch angle of 43.5˚, as well as a maximum roll angle of 43.6˚ with pitch and roll rates increase with increasing pump rate
    • …
    corecore