24 research outputs found

    Hardware, Software, and Low-Level Control Scheme Development for a Real-Time Autonomous Rover

    Get PDF
    The objective of this research is to develop a low-cost autonomous rover platform for experiments in autonomous navigation. This thesis describes the design, development, and testing of an autonomous rover platform, based on the commercial, off-the-shelf Tamiya TXT-1 radio controlled vehicle. This vehicle is outfitted with an onboard computer based on the Mini-ITX architecture and an array of sensors for localization and obstacle avoidance, and programmed with Matlab/SimulinkRTM Real-Time Workshop (RTW) utilizing the Linux Real-Time Application Interface (RTAI) operating system.;First, a kinematic model is developed and verified for the rover. Then a proportional-integral-derivative (PID) feedback controller is developed for translational and rotational velocity regulation. Finally, a hybrid navigation controller is developed combining a potential field controller and an obstacle avoidance controller for waypoint tracking.;Experiments are performed to verify the functionality of the kinematic model and the PID velocity controller, and to demonstrate the capabilities of the hybrid navigation controller. These experiments prove that the rover is capable of successfully navigating in an unknown indoor environment. Suggestions for future research include the integration of additional sensors for localization and creation of multiple platforms for autonomous coordination experiments

    Development and applications of a vision-based unmanned helicopter

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    NASA Tech Briefs, September 2011

    Get PDF
    Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    Unmanned Aerial Vehicle: tecnologie e prospettive future

    Get PDF
    Partendo dalla definizione di UAV e UAS, arrivando a quella di drone, nella tesi saranno definiti i termini precedenti, ossia un sistema aereo senza pilota a bordo, la nascita del termine drone e le tendenze attuali. Dopo una precisa classificazione nelle quattro categorie principali (droni per hobbisti, commerciali e militari di me- dia grandezza, militari specifici di grandi dimensioni e stealth da combattimento) saranno descritti gli ambiti di utilizzo: da un lato quello militare e della sicurezza, dall’altro quello civile e scientifico. I capitoli centrali della tesi saranno il cuore dell’opera: l’architettura dell’UAV sarà descritta analizzando la totalità delle sue componenti, sia hardware che software. Verranno, quindi, analizzati i problemi relativi alla sicurezza, focalizzandosi sull’hacking di un UAV, illustrandone le varie tecniche e contromisure (tra cui anche come nascondersi da un drone). Il lavoro della tesi prosegue nei capitoli successivi con un’attenta trattazione della normativa vigente e dell’etica dei droni (nonché del diritto ad uccidere con tali sistemi). Il capitolo relativo alla tecnologia stealth sarà importante per capire le modalità di occultamento, le tendenze attuali e i possibili sviluppi futuri degli UAV militari da combattimento. Il capitolo finale sugli sviluppi futuri esporrà le migliorie tecnologiche e gli obiettivi degli UAV negli anni a venire, insieme ad eventuali utilizzi sia militari che civili. La ricerca sarà orientata verso sistemi miniaturizzati, multiple UAV e swarming

    Artificial Intelligence for Small Satellites Mission Autonomy

    Get PDF
    Space mission engineering has always been recognized as a very challenging and innovative branch of engineering: since the beginning of the space race, numerous milestones, key successes and failures, improvements, and connections with other engineering domains have been reached. Despite its relative young age, space engineering discipline has not gone through homogeneous times: alternation of leading nations, shifts in public and private interests, allocations of resources to different domains and goals are all examples of an intrinsic dynamism that characterized this discipline. The dynamism is even more striking in the last two decades, in which several factors contributed to the fervour of this period. Two of the most important ones were certainly the increased presence and push of the commercial and private sector and the overall intent of reducing the size of the spacecraft while maintaining comparable level of performances. A key example of the second driver is the introduction, in 1999, of a new category of space systems called CubeSats. Envisioned and designed to ease the access to space for universities, by standardizing the development of the spacecraft and by ensuring high probabilities of acceptance as piggyback customers in launches, the standard was quickly adopted not only by universities, but also by agencies and private companies. CubeSats turned out to be a disruptive innovation, and the space mission ecosystem was deeply changed by this. New mission concepts and architectures are being developed: CubeSats are now considered as secondary payloads of bigger missions, constellations are being deployed in Low Earth Orbit to perform observation missions to a performance level considered to be only achievable by traditional, fully-sized spacecraft. CubeSats, and more in general the small satellites technology, had to overcome important challenges in the last few years that were constraining and reducing the diffusion and adoption potential of smaller spacecraft for scientific and technology demonstration missions. Among these challenges were: the miniaturization of propulsion technologies, to enable concepts such as Rendezvous and Docking, or interplanetary missions; the improvement of telecommunication state of the art for small satellites, to enable the downlink to Earth of all the data acquired during the mission; and the miniaturization of scientific instruments, to be able to exploit CubeSats in more meaningful, scientific, ways. With the size reduction and with the consolidation of the technology, many aspects of a space mission are reduced in consequence: among these, costs, development and launch times can be cited. An important aspect that has not been demonstrated to scale accordingly is operations: even for small satellite missions, human operators and performant ground control centres are needed. In addition, with the possibility of having constellations or interplanetary distributed missions, a redesign of how operations are management is required, to cope with the innovation in space mission architectures. The present work has been carried out to address the issue of operations for small satellite missions. The thesis presents a research, carried out in several institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the autonomy level of space missions, and in particular of small satellites. The key technology exploited in the research is Artificial Intelligence, a computer science branch that has gained extreme interest in research disciplines such as medicine, security, image recognition and language processing, and is currently making its way in space engineering as well. The thesis focuses on three topics, and three related applications have been developed and are here presented: autonomous operations by means of event detection algorithms, intelligent failure detection on small satellite actuator systems, and decision-making support thanks to intelligent tradespace exploration during the preliminary design of space missions. The Artificial Intelligent technologies explored are: Machine Learning, and in particular Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics; Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers the domain (small satellites), the technology (Artificial Intelligence), the focus (mission autonomy) and presents three case studies, that demonstrate the feasibility of employing Artificial Intelligence to enhance how missions are currently operated and designed

    Guidance, Navigation, and Control of Small Satellite Attitude Using Micro-Thrusters

    Get PDF
    M.S. University of Hawaii at Manoa 2016.Includes bibliographical references.In this study, a new and automated Navigation, Guidance and Control system is designed, analyzed, simulated and tested for small satellites. As is known, this system represents the primary unit of on-board control of a flight vehicle. It consists of a set of system software algorithms and hardware elements, including various sets of sensors and electronics depending on the type of the vehicle. This study is focused on small satellites, which are becoming one of the primary tools for a wide range of low Earth and deep space missions. The Navigation subsystem has been described in terms of its sensors and filtering technique, known as the Extended Kalman Filter. This subsystem provides the estimates of the satellite’s state vector. It is assumed that this vehicle’s Navigation subsystem includes GPS receiver, and accelerometer and gyro, which are considered as Inertial measurement Unit (IMU) component subsystems. The Guidance subsystem provides guidance commands for satellite’s actuators, which are assumed to include a set of micro-thrusters. The Control subsystem provides control commands for increments of torque of actuation. This study deals with the development, design and integration of the Navigation, Guidance and Control (known as GNC) subsystems into a unique framework that can be executed on-board in real time to perform satellite attitude maneuvers. The main focus is on the development of Guidance subsystem functions and algorithms. These functions, in particular, include attitude angles, angular rates and coefficients. The Guidance subsystem provides commanded angular acceleration based on a fourth-order polynomial with respect to time, which was used for lunar-descent trajectory guidance during the Moon landing maneuvers of Apollo Landers. The difference in the utility of this polynomial law in Apollo missions and this work is that in those missions this polynomial was used for trajectory guidance using numerically integrated trajectories as reference solutions. In this work, this polynomial is used to compute attitude guidance commands using a simple PD controller as an analytic reference attitude profile. The novelty of this work is that this polynomial law is formulated and implemented for the first time for real-time and on-board attitude guidance and control using a set of microthrusters as part of the integrated GNC system. Another element of novelty is associated with targeting. A real-time targeting procedure implies on-board computations of the target states and the time remaining to achieve the target state from the current state. In this work, the target state includes Euler angles and their rates. As such, the targeting is considered as an integral and critical part of the guidance function. The guidance command is computed only after computations of the target state and is the explicit function of this state. Therefore, the proposed guidance function is considered as the ob-board target-relative attitude guidance. The performance of the proposed GNC system has been demonstrated by two illustrative examples. In the first example, the satellite is guided to orient itself to its target position. In the second example, the satellite is guided to perform two consecutive rotational maneuvers, detumbling and reorientation, to achieve a desired attitude. The numerical simulation parameters and its results are illustrated by various plots and qualitative analysis of the relationships between the satellite’s state and guidance parameters. The list of references and appendix with necessary formulas and figures are provided

    Percepción basada en visión estereoscópica, planificación de trayectorias y estrategias de navegación para exploración robótica autónoma

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia artificial, leída el 13-05-2015En esta tesis se trata el desarrollo de una estrategia de navegación autónoma basada en visión artificial para exploración robótica autónoma de superficies planetarias. Se han desarrollado una serie de subsistemas, módulos y software específicos para la investigación desarrollada en este trabajo, ya que la mayoría de las herramientas existentes para este dominio son propiedad de agencias espaciales nacionales, no accesibles a la comunidad científica. Se ha diseñado una arquitectura software modular multi-capa con varios niveles jerárquicos para albergar el conjunto de algoritmos que implementan la estrategia de navegación autónoma y garantizar la portabilidad del software, su reutilización e independencia del hardware. Se incluye también el diseño de un entorno de trabajo destinado a dar soporte al desarrollo de las estrategias de navegación. Éste se basa parcialmente en herramientas de código abierto al alcance de cualquier investigador o institución, con las necesarias adaptaciones y extensiones, e incluye capacidades de simulación 3D, modelos de vehículos robóticos, sensores, y entornos operacionales, emulando superficies planetarias como Marte, para el análisis y validación a nivel funcional de las estrategias de navegación desarrolladas. Este entorno también ofrece capacidades de depuración y monitorización.La presente tesis se compone de dos partes principales. En la primera se aborda el diseño y desarrollo de las capacidades de autonomía de alto nivel de un rover, centrándose en la navegación autónoma, con el soporte de las capacidades de simulación y monitorización del entorno de trabajo previo. Se han llevado a cabo un conjunto de experimentos de campo, con un robot y hardware real, detallándose resultados, tiempo de procesamiento de algoritmos, así como el comportamiento y rendimiento del sistema en general. Como resultado, se ha identificado al sistema de percepción como un componente crucial dentro de la estrategia de navegación y, por tanto, el foco principal de potenciales optimizaciones y mejoras del sistema. Como consecuencia, en la segunda parte de este trabajo, se afronta el problema de la correspondencia en imágenes estéreo y reconstrucción 3D de entornos naturales no estructurados. Se han analizado una serie de algoritmos de correspondencia, procesos de imagen y filtros. Generalmente se asume que las intensidades de puntos correspondientes en imágenes del mismo par estéreo es la misma. Sin embargo, se ha comprobado que esta suposición es a menudo falsa, a pesar de que ambas se adquieren con un sistema de visión compuesto de dos cámaras idénticas. En consecuencia, se propone un sistema experto para la corrección automática de intensidades en pares de imágenes estéreo y reconstrucción 3D del entorno basado en procesos de imagen no aplicados hasta ahora en el campo de la visión estéreo. Éstos son el filtrado homomórfico y la correspondencia de histogramas, que han sido diseñados para corregir intensidades coordinadamente, ajustando una imagen en función de la otra. Los resultados se han podido optimizar adicionalmente gracias al diseño de un proceso de agrupación basado en el principio de continuidad espacial para eliminar falsos positivos y correspondencias erróneas. Se han estudiado los efectos de la aplicación de dichos filtros, en etapas previas y posteriores al proceso de correspondencia, con eficiencia verificada favorablemente. Su aplicación ha permitido la obtención de un mayor número de correspondencias válidas en comparación con los resultados obtenidos sin la aplicación de los mismos, consiguiendo mejoras significativas en los mapas de disparidad y, por lo tanto, en los procesos globales de percepción y reconstrucción 3D.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93
    corecore