226 research outputs found

    Design and Control of Robotic Systems for Lower Limb Stroke Rehabilitation

    Get PDF
    Lower extremity stroke rehabilitation exhausts considerable health care resources, is labor intensive, and provides mostly qualitative metrics of patient recovery. To overcome these issues, robots can assist patients in physically manipulating their affected limb and measure the output motion. The robots that have been currently designed, however, provide assistance over a limited set of training motions, are not portable for in-home and in-clinic use, have high cost and may not provide sufficient safety or performance. This thesis proposes the idea of incorporating a mobile drive base into lower extremity rehabilitation robots to create a portable, inherently safe system that provides assistance over a wide range of training motions. A set of rehabilitative motion tasks were established and a six-degree-of-freedom (DOF) motion and force-sensing system was designed to meet high-power, large workspace, and affordability requirements. An admittance controller was implemented, and the feasibility of using this portable, low-cost system for movement assistance was shown through tests on a healthy individual. An improved version of the robot was then developed that added torque sensing and known joint elasticity for use in future clinical testing with a flexible-joint impedance controller

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    An efficacious method to assemble a modern multi-modal robotic team: dilemmas, challenges, possibilities and solutions

    Get PDF
    A modern multiagent robotic platform consists of a cooperative team of humans which develop a collaborative team of robots. The multi-modal nature of both the system and the team causes a complex problem which needs to be solved for optimum performance. Both the management and the technical aspect of a modern robotic team are explored in this Chapter in the platform of the RoboCup Competition. RoboCup is an example of such an environment where researchers from different disciplines join to develop a robotic team for completion as an evaluation challenge (Robocup, 2011). RoboCup competitions were first proposed by Mackworth in 1993. The main goal of this scientific competition is to exploit, improve and integrate the methods and techniques from robotics, machine vision and artificial intelligence disciplines to create an autonomous team of soccer playing robots(Kitano, 1997a; Kitano, 1997b; Kitano et al., 1997). Such experiment includes several challenges, from inviting an expert of specific field to the team to choosing bolts and nuts for each part of the robots. Usually each challenge has several possible solutions and choosing the best one is often challenging. We have participated in several world wide RoboCup competitions (Abdollahi, Samani et al. 2002, 2003 & 2004) and share our experience as an extensive instruction for setting up a modern robotic team including management and technical issues.Peer ReviewedPostprint (published version

    Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels

    Get PDF
    Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robot’s chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (θ) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (θ = 30°, 45°, 60°, 90°, and 120°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (θ), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (θ) and also the application of TWOMR in different situations
    corecore