20 research outputs found

    Quantitative Performance Assessment of LiDAR-based Vehicle Contour Estimation Algorithms for Integrated Vehicle Safety Applications

    Get PDF
    Many nations and organizations are committing to achieving the goal of `Vision Zero\u27 and eliminate road traffic related deaths around the world. Industry continues to develop integrated safety systems to make vehicles safer, smarter and more capable in safety critical scenarios. Passive safety systems are now focusing on pre-crash deployment of restraint systems to better protect vehicle passengers. Current commonly used bounding box methods for shape estimation of crash partners lack the fidelity required for edge case collision detection and advanced crash modeling. This research presents a novel algorithm for robust and accurate contour estimation of opposing vehicles. The presented method is evaluated via a developed framework for key performance metrics and compared to alternative algorithms found in literature

    Auto-sapiens autonomous driving vehicle

    Get PDF
    This paper presents the Auto-Sapiens project, an autonomous driving car developed by the Mechatronics and Vehicle Dynamics Lab, at Sapienza University of Rome. Auto-Sapiens is a technological platform to test and improve innovative control algorithms. The car platform is a standard car (Smart ForTwo) equipped with throttle, brake, steering actuators and different sensors for attitude identification and environment reconstruction. The first experiments of the Auto-Sapiens car test a new obstacle avoidance. The vehicle, controlled by an optimal variational feedback control, recently developed by the authors, includes the nonlinearities inherent in the car dynamics for better performances. Results show the effectiveness of the system in terms of safety and robustness of the avoidance maneuvers

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    L'abstract รจ presente nell'allegato / the abstract is in the attachmen

    Novel Validation Techniques for Autonomous Vehicles

    Get PDF
    The automotive industry is facing challenges in producing electrical, connected, and autonomous vehicles. Even if these challenges are, from a technical point of view, independent from each other, the market and regulatory bodies require them to be developed and integrated simultaneously. The development of autonomous vehicles implies the development of highly dependable systems. This is a multidisciplinary activity involving knowledge from robotics, computer science, electrical and mechanical engineering, psychology, social studies, and ethics. Nowadays, many Advanced Driver Assistance Systems (ADAS), like Emergency Braking System, Lane Keep Assistant, and Park Assist, are available. Newer luxury cars can drive by themselves on highways or park automatically, but the end goal is to develop completely autonomous driving vehicles, able to go by themselves, without needing human interventions in any situation. The more vehicles become autonomous, the greater the difficulty in keeping them reliable. It enhances the challenges in terms of development processes since their misbehaviors can lead to catastrophic consequences and, differently from the past, there is no more a human driver to mitigate the effects of erroneous behaviors. Primary threats to dependability come from three sources: misuse from the drivers, design systematic errors, and random hardware failures. These safety threats are addressed under various aspects, considering the particular type of item to be designed. In particular, for the sake of this work, we analyze those related to Functional Safety (FuSa), viewed as the ability of a system to react on time and in the proper way to the external environment. From the technological point of view, these behaviors are implemented by electrical and electronic items. Various standards to achieve FuSa have been released over the years. The first, released in 1998, was the IEC 61508. Its last version is the one released in 2010. This standard defines mainly: โ€ข a Functional Safety Management System (FSMS); โ€ข methods to determine a Safety Integrated Level (SIL); โ€ข methods to determine the probability of failures. To adapt the IEC61508 to the automotive industryโ€™s peculiarity, a newer standard, the ISO26262, was released in 2011 then updated in 2018. This standard provides guidelines about FSMS, called in this case Safety Lifecycle, describing how to develop software and hardware components suitable for functional safety. It also provides a different way to compute the SIL, called in this case Automotive SIL (ASIL), allowing us to consider the average driverโ€™s abilities to control the vehicle in case of failures. Moreover, it describes a way to determine the probability of random hardware failures through Failure Mode, Effects, and Diagnostic Analysis (FMEDA). This dissertation contains contributions to three topics: โ€ข random hardware failures mitigation; โ€ข improvementoftheISO26262HazardAnalysisandRiskAssessment(HARA); โ€ข real-time verification of the embedded software. As the main contribution of this dissertation, I address the safety threats due to random hardware failures (RHFs). For this purpose, I propose a novel simulation-based approach to aid the Failure Mode, Effects, and Diagnostic Analysis (FMEDA) required by the ISO26262 standard. Thanks to a SPICE-level model of the item, and the adoption of fault injection techniques, it is possible to simulate its behaviors obtaining useful information to classify the various failure modes. The proposed approach evolved from a mere simulation of the item, allowing only an item-level failure mode classification up to a vehicle-level analysis. The propagation of the failure modesโ€™ effects on the whole vehicle enables us to assess the impacts on the vehicleโ€™s drivability, improving the quality of the classifications. It can be advantageous where it is difficult to predict how the item-level misbehaviors propagate to the vehicle level, as in the case of a virtual differential gear or the mobility system of a robot. It has been chosen since it can be considered similar to the novel light vehicles, such as electric scooters, that are becoming more and more popular. Moreover, my research group has complete access to its design since it is realized by our universityโ€™s DIANA studentsโ€™ team. When a SPICE-level simulation is too long to be performed, or it is not possible to develop a complete model of the item due to intellectual property protection rules, it is possible to aid this process through behavioral models of the item. A simulation of this kind has been performed on a mobile robotic system. Behavioral models of the electronic components were used, alongside mechanical simulations, to assess the software failure mitigation capabilities. Another contribution has been obtained by modifying the main one. The idea was to make it possible to aid also the Hazard Analysis and Risk Assessment (HARA). This assessment is performed during the concept phase, so before starting to design the item implementation. Its goal is to determine the hazards involved in the item functionality and their associated levels of risk. The end goal of this phase is a list of safety goals. For each one of these safety goals, an ASIL has to be determined. Since HARA relies only on designers expertise and knowledge, it lacks in objectivity and repeatability. Thanks to the simulation results, it is possible to predict the effects of the failures on the vehicleโ€™s drivability, allowing us to improve the severity and controllability assessment, thus improving the objectivity. Moreover, since simulation conditions can be stored, it is possible, at any time, to recheck the results and to add new scenarios, improving the repeatability. The third group of contributions is about the real-time verification of embedded software. Through Hardware-In-the-Loop (HIL), a software integration verification has been performed to test a fundamental automotive component, mixed-criticality applications, and multi-agent robots. The first of these contributions is about real-time tests on Body Control Modules (BCM). These modules manage various electronic accessories in the vehicleโ€™s body, like power windows and mirrors, air conditioning, immobilizer, central locking. The main characteristics of BCMs are the communications with other embedded computers via the carโ€™s vehicle bus (Controller Area Network) and to have a high number (hundreds) of low-speed I/Os. As the second contribution, I propose a methodology to assess the error recovery systemโ€™s effects on mixed-criticality applications regarding deadline misses. The system runs two tasks: a critical airplane longitudinal control and a non-critical image compression algorithm. I start by presenting the approach on a benchmark application containing an instrumented bug into the lower criticality task; then, we improved it by injecting random errors inside the lower criticality taskโ€™s memory space through a debugger. In the latter case, thanks to the HIL, it is possible to pause the time domain simulation when the debugger operates and resume it once the injection is complete. In this way, it is possible to interact with the target without interfering with the simulation results, combining a full control of the target with an accurate time-domain assessment. The last contribution of this third group is about a methodology to verify, on multi-agent robots, the synchronization between two agents in charge to move the end effector of a delta robot: the correct position and speed of the end effector at any time is strongly affected by a loss of synchronization. The last two contributions may seem unrelated to the automotive industry, but interest in these applications is gaining. Mixed-criticality systems allow reducing the number of ECUs inside cars (for cost reduction), while the multi-agent approach is helpful to improve the cooperation of the connected cars with respect to other vehicles and the infrastructure. The fourth contribution, contained in the appendix, is about a machine learning application to improve the social acceptance of autonomous vehicles. The idea is to improve the comfort of the passengers by recognizing their emotions. I started with the idea to modify the vehicleโ€™s driving style based on a real-time emotions recognition system but, due to the difficulties of performing such operations in an experimental setup, I move to analyze them offline. The emotions are determined on volunteersโ€™ facial expressions recorded while viewing 3D representa- tions showing different calibrations. Thanks to the passengersโ€™ emotional responses, it is possible to choose the better calibration from the comfort point of view

    A systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality.

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. ์ตœํƒœํ˜„.The society is anticipated to gain a lot from Autonomous Vehicles (AV), such as improved traffic flow and a decrease in accidents. They heavily rely on improvements in various Artificial Intelligence (AI) processes and strategies. Though some researchers in this field believe AV is the key to enhancing safety, others believe AV creates new challenges when it comes to ensuring the security of these new technology/systems and applications. The article conducts a systematic literature review on the relationship between autonomous vehicle technology and traffic-related mortality. According to inclusion and exclusion criteria, articles from EBSCO, ProQuest, IEEE Explorer, Web of Science were chosen, and they were then sorted. The findings reveal that the most of these publications have been published in advanced transport-related journals. Future improvements in the automobile industry and the development of intelligent transportation systems could help reduce the number of fatal traffic accidents. Technologies for autonomous cars provide effective ways to enhance the driving experience and reduce the number of traffic accidents. A multitude of driving-related problems, such as crashes, traffic, energy usage, and environmental pollution, will be helped by autonomous driving technology. More research is needed for the significant majority of the studies that were assessed. They need to be expanded so that they can be tested in real-world or computer-simulated scenarios, in better and more realistic scenarios, with better and more data, and in experimental designs where the results of the proposed strategy are compared to those of industry standards and competing strategies. Therefore, additional study with improved methods is needed. Another major area that requires additional research is the moral and ethical choices made by AVs. Government, policy makers, manufacturers, and designers all need to do many actions in order to deploy autonomous vehicles on the road effectively. The government should develop laws, rules, and an action plan in particular. It is important to create more effective programs that might encourage the adoption of emerging technology in transportation systems, such as driverless vehicles. In this regard, user perception becomes essential since it may inform designers about current issues and observations made by people. The perceptions of autonomous car users in developing countries like Azerbaijan haven't been thoroughly studied up to this point. The manufacturer has to fix the system flaw and needs a good data set for efficient operation. In the not-too-distant future, the widespread use of highly automated vehicles (AVs) may open up intriguing new possibilities for resolving persistent issues in current safety-related research. Further research is required to better understand and quantify the significant policy implications of Avs, taking into consideration factors like penetration rate, public adoption, technological advancements, traffic patterns, and business models. It only needs to take into account peer-reviewed, full-text journal papers for the investigation, but it's clear that a larger database and more documents would provide more results and a more thorough analysis.์ž์œจ์ฃผํ–‰์ฐจ(AV)๋ฅผ ํ†ตํ•ด ๊ตํ†ต ํ๋ฆ„์ด ๊ฐœ์„ ๋˜๊ณ  ์‚ฌ๊ณ ๊ฐ€ ์ค„์–ด๋“œ๋Š” ๋“ฑ ์‚ฌํšŒ๊ฐ€ ์–ป๋Š” ๊ฒƒ์ด ๋งŽ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋“ค์€ ๋‹ค์–‘ํ•œ ์ธ๊ณต์ง€๋Šฅ(AI) ํ”„๋กœ์„ธ์Šค์™€ ์ „๋žต์˜ ๊ฐœ์„ ์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ์ด ๋ถ„์•ผ์˜ ์ผ๋ถ€ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์—ด์‡ ๋ผ๊ณ  ๋ฏฟ์ง€๋งŒ, ๋‹ค๋ฅธ ์—ฐ๊ตฌ์ž๋“ค์€ AV๊ฐ€ ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ /์‹œ์Šคํ…œ ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋ณด์•ˆ์„ ๋ณด์žฅํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค๊ณ  ๋ฏฟ๋Š”๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ž์œจ์ฃผํ–‰์ฐจ ๊ธฐ์ˆ ๊ณผ ๊ตํ†ต ๊ด€๋ จ ์‚ฌ๋ง๋ฅ  ์‚ฌ์ด์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ๋ฌธํ—Œ ๊ฒ€ํ† ๋ฅผ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํฌํ•จ ๋ฐ ์ œ์™ธ ๊ธฐ์ค€์— ๋”ฐ๋ผ EBSCO, ProQuest, IEEE Explorer ๋ฐ Web of Science์˜ ๊ธฐ์‚ฌ๋ฅผ ์„ ํƒํ•˜๊ณ  ๋ถ„๋ฅ˜ํ–ˆ๋‹ค.์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์ด๋Ÿฌํ•œ ์ถœํŒ๋ฌผ์˜ ๋Œ€๋ถ€๋ถ„์ด ๊ณ ๊ธ‰ ์šด์†ก ๊ด€๋ จ ์ €๋„์— ๊ฒŒ์žฌ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋ฏธ๋ž˜์˜ ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ฐœ์„ ๊ณผ ์ง€๋Šฅํ˜• ๊ตํ†ต ์‹œ์Šคํ…œ์˜ ๊ฐœ๋ฐœ์€ ์น˜๋ช…์ ์ธ ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ ๊ธฐ์ˆ ์€ ์šด์ „ ๊ฒฝํ—˜์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ตํ†ต ์‚ฌ๊ณ ์˜ ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ถฉ๋Œ, ๊ตํ†ต, ์—๋„ˆ์ง€ ์‚ฌ์šฉ, ํ™˜๊ฒฝ ์˜ค์—ผ๊ณผ ๊ฐ™์€ ์ˆ˜๋งŽ์€ ์šด์ „ ๊ด€๋ จ ๋ฌธ์ œ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์— ์˜ํ•ด ๋„์›€์„ ๋ฐ›์„ ๊ฒƒ์ด๋‹ค. ํ‰๊ฐ€๋œ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด ๋” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹ค์ œ ๋˜๋Š” ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ํ˜„์‹ค์ ์ธ ์‹œ๋‚˜๋ฆฌ์˜ค, ๋” ์ข‹๊ณ  ๋” ๋งŽ์€ ๋ฐ์ดํ„ฐ, ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ์ „๋žต ๊ฒฐ๊ณผ๊ฐ€ ์‚ฐ์—… ํ‘œ์ค€ ๋ฐ ๊ฒฝ์Ÿ ์ „๋žต์˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ต๋˜๋Š” ์‹คํ—˜ ์„ค๊ณ„์—์„œ ํ…Œ์ŠคํŠธ๋  ์ˆ˜ ์žˆ๋„๋ก ํ™•์žฅ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐœ์„ ๋œ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ๋˜ ๋‹ค๋ฅธ ์ฃผ์š” ๋ถ„์•ผ๋Š” AV์˜ ๋„๋•์ , ์œค๋ฆฌ์  ์„ ํƒ์ด๋‹ค. ์ •๋ถ€, ์ •์ฑ… ์ž…์•ˆ์ž, ์ œ์กฐ์—…์ฒด ๋ฐ ์„ค๊ณ„์ž๋Š” ๋ชจ๋‘ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์„ ํšจ๊ณผ์ ์œผ๋กœ ๋„๋กœ์— ๋ฐฐ์น˜ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์กฐ์น˜๋ฅผ ์ทจํ•ด์•ผ ํ•œ๋‹ค. ์ •๋ถ€๋Š” ํŠนํžˆ ๋ฒ•, ๊ทœ์น™, ์‹คํ–‰ ๊ณ„ํš์„ ๊ฐœ๋ฐœํ•ด์•ผ ํ•œ๋‹ค. ์šด์ „์ž ์—†๋Š” ์ฐจ๋Ÿ‰๊ณผ ๊ฐ™์€ ์šด์†ก ์‹œ์Šคํ…œ์—์„œ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์˜ ์ฑ„ํƒ์„ ์žฅ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ๋ณด๋‹ค ํšจ๊ณผ์ ์ธ ํ”„๋กœ๊ทธ๋žจ์„ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ, ์„ค๊ณ„์ž์—๊ฒŒ ํ˜„์žฌ ์ด์Šˆ์™€ ์‚ฌ๋žŒ์— ์˜ํ•œ ๊ด€์ฐฐ์„ ์•Œ๋ ค์ค„ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์šฉ์ž ์ธ์‹์ด ํ•„์ˆ˜์ ์ด ๋œ๋‹ค.์ œ์กฐ์—…์ฒด๋Š” ์‹œ์Šคํ…œ ๊ฒฐํ•จ์„ ์ˆ˜์ •ํ•ด์•ผ ํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ์ž‘๋™์„ ์œ„ํ•ด ์ข‹์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ฉ€์ง€ ์•Š์€ ๋ฏธ๋ž˜์—, ๊ณ ๋„๋กœ ์ž๋™ํ™”๋œ ์ฐจ๋Ÿ‰(AV)์˜ ๊ด‘๋ฒ”์œ„ํ•œ ์‚ฌ์šฉ์€ ํ˜„์žฌ์˜ ์•ˆ์ „ ๊ด€๋ จ ์—ฐ๊ตฌ์—์„œ ์ง€์†์ ์ธ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ํฅ๋ฏธ๋กœ์šด ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์–ด์ค„ ์ˆ˜ ์žˆ๋‹ค. ๋ณด๊ธ‰๋ฅ , ๊ณต๊ณต ์ฑ„ํƒ, ๊ธฐ์ˆ  ๋ฐœ์ „, ๊ตํ†ต ํŒจํ„ด ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ๊ณผ ๊ฐ™์€ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ Avs์˜ ์ค‘์š”ํ•œ ์ •์ฑ… ์˜ํ–ฅ์„ ๋” ์ž˜ ์ดํ•ดํ•˜๊ณ  ์ •๋Ÿ‰ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์กฐ์‚ฌ๋ฅผ ์œ„ํ•ด ๋™๋ฃŒ ๊ฒ€ํ† ๋ฅผ ๊ฑฐ์นœ ์ „๋ฌธ ์ €๋„ ๋…ผ๋ฌธ๋งŒ ๊ณ ๋ คํ•˜๋ฉด ๋˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๊ฐ€ ์ปค์ง€๊ณ  ๋ฌธ์„œ๊ฐ€ ๋งŽ์•„์ง€๋ฉด ๋” ๋งŽ์€ ๊ฒฐ๊ณผ์™€ ๋” ์ฒ ์ €ํ•œ ๋ถ„์„์ด ์ œ๊ณต๋  ๊ฒƒ์ด ๋ถ„๋ช…ํ•˜๋‹ค.Abstract 3 Table of Contents 6 List of Tables 7 List of Figures 7 List of Appendix 7 CHAPTER 1: INTRODUCTION 8 1.1. Background 8 1.2. Purpose of Research 13 CHAPTER 2: AUTONOMOUS VEHICLES 21 2.1. Intelligent Traffic Systems 21 2.2. System Architecture for Autonomous Vehicles 22 2.3. Key components in AV classification 27 CHAPTER 3: METHODOLOGY AND DATA COLLECTION PROCEDURE 35 CHAPTER 4: FINDINGS AND DISCUSSION 39 4.1. RQ1: Do autonomous vehicles reduce traffic-related deaths 40 4.2. RQ2: Are there any challenges to using autonomous vehicles 63 4.3. RQ3: As a developing country, how effective is the use of autonomous vehicles for reducing traffic mortality 72 CHAPTER 5: CONCLUSION 76 5.1. Summary 76 5.2. Implications and Recommendations 80 5.3. Limitation of the study 91 Bibliography 93 List of Tables Table 1: The 6 Levels of Autonomous Vehicles Table 2: Search strings Table 3: Inclusion and exclusion criteria List of Figures Figure 1: Traffic Death Comparison with Europe Figure 2: Research strategy and study selection process List of Appendix Appendix 1: List of selected articles์„

    ์ฐจ๋Ÿ‰๊ฐ„ ํ†ต์‹ ์„ ์ด์šฉํ•œ ์ง€๋Šฅํ˜• ์ž๋™์ฐจ์˜ ์ „๋ฐฉ์ฐจ๋Ÿ‰ ์œ„ํ—˜ํŒ๋‹จ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2017. 8. ์ด๊ฒฝ์ˆ˜.In recent years, advanced driver assistance systems or highly automated driving systems are expected to enhance road traffic safety, transport efficiency, and driver comfort. Practical applications have become possible due to recent advances in vehicle local sensors and inter vehicle communications. These advances have opened up many possibilities for active safety systems to be more intelligent and robust. The further enhancement of these technologies can be utilized as a risk assessment system of automated drive. This dissertation presents a risk assessment for improved vehicle safety using Front Vehicle Dynamic States through vehicle-to-vehicle wireless communication. A vehicle-to-vehicle wireless communication (V2V communication) has been implemented and fused with a radar sensor to obtain the prediction of remote vehicles motion. Based on the predicted behavior of remote vehicles, a collision risk and a human reaction time are determined for a better driver acceptance and active safety control intervention. A human-centered risk assessment using the V2V communication has been incorporated into a collision avoidance algorithm to monitor threat vehicles ahead and to find the best intervention point. The performance of the proposed algorithm has been investigated via computer simulations and vehicle tests for application to urban and highway driving situation. It has been shown from both simulations and vehicle tests that the proposed integrated risk assessment algorithm with the V2V communication can be beneficial to active safety systems in decision of controller intervention moment and in control of automated drive for the guaranteed safety.Chapter 1 Introduction 1 1.1 Background and Motivations 1 1.2 Previous Researches 5 1.3 Thesis Objectives 9 1.4 Thesis Outline 11 Chapter 2 Vehicular Communication 12 2.1. Literature Review 14 2.1.1 An Empirical Model for V2V communication 14 2.1.2 Position based Sampling and Distance based Interpolation 17 2.2. Communication Delay and Packet Loss Ratio 21 2.2.1 Compensation of V2V Communication Delay 21 Chapter 3 Human Factor Considerations 27 3.1. Driver Acceptance 30 3.1.1 Driver inattention and distraction 31 3.1.2 Mode Confusion 31 3.1.3 Motion Sickness 32 3.2. Sight Distance 33 3.2.1 Stopping Sight Distance 35 3.2.2 Decision Sight Distance 35 Chapter 4 Human-Centered Risk Assessment using Vehicular Wireless Communication 37 4.1. Human-Centered Design 41 4.2. Convergence 43 4.2.1. Sensor-Based Solutions 44 4.2.2. The Benefits to Convergence 45 4.2.3. V2V/Radar Information Fusion 45 4.3. Related Work 46 4.3.1. Radar Sensing Characteristics 47 4.3.2. Probabilistic Threat Assessment 50 4.3.3. Human-Centered Vehicle Control 52 4.3.4. High-Level Information Fusion 54 4.3.5. Target Vehicle State Estimation Performance 58 4.4 Remote Vehicle States Prediction 64 4.5. Collision Risk Analysis 67 4.6. Predicted Collision Distance 70 4.7. Active Safety Intervention Moment Decision 72 Chapter 5 Performance Evaluations 77 5.1. Simulations: MPC based Automated Vehicle Control 78 5.1.1. Effects of V2V Communication on the Controller 78 5.2. Simulations : Human-Centered Risk Assessment 84 5.2.1. Scenarios 84 5.2.2. Effects of V2V Communication: Host vehicle perception only 86 5.2.3. Effects of V2V Communication: Controlled host vehicle 90 5.3. Vehicle Tests 94 5.3.1. Test Vehicle Configuration and Scenario 94 5.3.2. Implementation and Evaluation 96 Chapter 6 Conclusion 99 Bibliography 100 ๊ตญ๋ฌธ์ดˆ๋ก 110Docto

    Performance of Sensor Fusion for Vehicular Applications

    Get PDF
    Sensor fusion is a key system in Advanced Driver Assistance Systems, ADAS. The perfor-mance of the sensor fusion depends on many factors such as the sensors used, the kinematicmodel used in the Extended Kalman Filter, EKF, the motion of the vehicles, the type ofroad, the density of vehicles, and the gating methods. The interactions between parametersand the extent to which individual parameters contribute to the overall accuracy of a sensorfusion system can be difficult to assess.In this study, a full-factorial experimental evaluation of a sensor fusion system basedon a real vehicle was performed. The experimental results for different driving scenariosand parameters are discussed and the factors that make the most impact are identified.The performance of sensor fusion depends on many factors such as the sensors used, thekinematic model used in the Extended Kalman Filter (EKF) motion of the vehicles, type ofroad, density of vehicles, and gating methods.This study identified that the distance between the vehicles has the largest impact on theestimation error because the vision sensor performs poorly with increased distance. In addi-tion, it was identified that the kinematic models had no significant impact on the estimation.Last but not least, the ellipsoid gates performed better than rectangular gates.In addition, we propose a new gating algorithm called an angular gate. This algorithmis based on the observation that the data for each target lies in the direction of that target.Therefore, the angle and the range can be used for setting up a two-level gating approachthat is both more intuitive and computationally faster than ellipsoid gates. The angulargates can achieve a speedup factor of up to 2.27 compared to ellipsoid gates.Furthermore, we provide time complexity analysis of angular gates, ellipsoid gates, andrectangular gates demonstrating the theoretical reasons why angular gates perform better.Last, we evaluated the performance of the Munkres algorithm using a full factorial designand identified that narrower gates can speedup the running time of the Munkres algorithmand, surprisingly, even improve the RMSE in some cases.The low target maneuvering index of vehicular systems was identified as the reason whythe kinematic models do not have an impact on the estimation. This finding supports the useof simpler and computationally inexpensive filters instead of complex Interacting MultipleModel filters. The angular gates also improve the computational efficiency of the overallsensor fusion system making them suitable for vehicular application as well as for embeddedsystems and robotics

    Localization and 2D Mapping Using Low-Cost Lidar

    Get PDF
    Autonomous vehicles are expected to make a profound change in auto industry. An autonomous vehicle is a vehicle that is able to sense its surroundings and travel with little or no human intervention. The four key capabilities of autonomous vehicles are a comprehensive understanding of sensor data, knowledge of their positions in the world, building the map of unknown environment, as well as following the planed route and collision avoidance. This thesis is aimed at building a low-cost autonomous vehicle prototype that is capable of localization and 2D mapping simultaneously. In addition, the prototype should be able to detect obstacles and avoid collision. In this thesis, a Redbot is utilized as a moving vehicle to evaluate collision avoidance functionality. A mechnical bumper in front of the Redbot is used to detect obstacles, and a remote user can send appropriate commands to control the Redbot via Zigbee network, then Redbot acts accordingly, including driving straightly, changing direction to right or left, and stop. Redbot are also used to carry the lidar scanner which consists of Lidar Lite V3 and a servo motor. Lidar data are sent back to a Laptop running ROS via Zigbee network. In ROS, Hector SLAM metapackage is adopted to process the lidar data, and realize the functionality of simultaneous localization and 2D mapping. After implementing the autonomous vehicle prototype, a series of tests are con- ducted to evaluate the functionality of localization, 2D mapping, obstacle detection, and collision avoidance. The results demonstrated that the prototype is capable of building usable 2D maps of unknown environment, simultaneous localization, obstacle detection and collision avoidance in time. Due to the limited scan range of the low-cost lidar scanner, boundary missing problem can happen. This limitation can be solved through the use of a lidar scanner with larger scan range

    Design and evaluation of safety-critical applications based on inter-vehicle communication

    Get PDF
    Inter-vehicle communication has a potential to improve road traffic safety and efficiency. Technical feasibility of communication between vehicles has been extensively studied, but due to the scarcity of application-level research, communication\u27s impact on the road traffic is still unclear. This thesis addresses this uncertainty by designing and evaluating two fail-safe applications, namely, Rear-End Collision Avoidance and Virtual Traffic Lights

    A Survey on Modelling of Automotive Radar Sensors for Virtual Test and Validation of Automated Driving

    Get PDF
    Radar sensors were among the first perceptual sensors used for automated driving. Although several other technologies such as lidar, camera, and ultrasonic sensors are available, radar sensors have maintained and will continue to maintain their importance due to their reliability in adverse weather conditions. Virtual methods are being developed for verification and validation of automated driving functions to reduce the time and cost of testing. Due to the complexity of modelling high-frequency wave propagation and signal processing and perception algorithms, sensor models that seek a high degree of accuracy are challenging to simulate. Therefore, a variety of different modelling approaches have been presented in the last two decades. This paper comprehensively summarises the heterogeneous state of the art in radar sensor modelling. Instead of a technology-oriented classification as introduced in previous review articles, we present a classification of how these models can be used in vehicle development by using the V-model originating from software development. Sensor models are divided into operational, functional, technical, and individual models. The application and usability of these models along the development process are summarised in a comprehensive tabular overview, which is intended to support future research and development at the vehicle level and will be continuously updated
    corecore