12,660 research outputs found

    A Parallel Autonomy Research Platform

    Get PDF
    We present the development of a full-scale “parallel autonomy” research platform including software and hardware. In the parallel autonomy paradigm, the control of the vehicle is shared; the human is still in control of the vehicle, but the autonomy system is always running in the background to prevent accidents. Our holistic approach includes: (1) a driveby-wire conversion method only based on reverse engineering, (2) mounting of relatively inexpensive sensors onto the vehicle, (3) implementation of a localization and mapping system, (4) obstacle detection and (5) a shared controller as well as (6) integration with an advanced autonomy simulation system (Drake) for rapid development and testing. The system can operate in three modes: (a) manual driving, (b) full autonomy, where the system is in complete control of the vehicle and (c) parallel autonomy, where the shared controller is implemented. We present results from extensive testing of a full-scale vehicle on closed tracks that demonstrate these capabilities

    Affordance-based control of a variable-autonomy telerobot

    Get PDF
    Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis. "September 2012."Includes bibliographical references (pages 37-38).Most robot platforms operate in one of two modes: full autonomy, usually in the lab; or low-level teleoperation, usually in the field. Full autonomy is currently realizable only in narrow domains of robotics-like mapping an environment. Tedious teleoperation/joystick control is typical in military applications, like complex manipulation and navigation with bomb-disposal robots. This thesis describes a robot "surrogate" with an intermediate and variable level of autonomy. The robot surrogate accomplishes manipulation tasks by taking guidance and planning suggestions from a human "supervisor." The surrogate does not engage in high-level reasoning, but only in intermediate-level planning and low-level control. The human supervisor supplies the high-level reasoning and some intermediate control-leaving execution details for the surrogate. The supervisor supplies world knowledge and planning suggestions by "drawing" on a 3D view of the world constructed from sensor data. The surrogate conveys its own model of the world to the supervisor, to enable mental-model sharing between supervisor and surrogate. The contributions of this thesis include: (1) A novel partitioning of the manipulation task load between supervisor and surrogate, which side-steps problems in autonomous robotics by replacing them with problems in interfaces, perception, planning, control, and human-robot trust; and (2) The algorithms and software designed and built for mental model-sharing and supervisor-assisted manipulation. Using this system, we are able to command the PR2 to manipulate simple objects incorporating either a single revolute or prismatic joint.by Michael Fleder.M. Eng

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    a human in the loop cyber physical system for collaborative assembly in smart manufacturing

    Get PDF
    Abstract Industry 4.0 rose with the introduction of cyber-physical systems (CPS) and Internet of things (IoT) inside manufacturing systems. CPS represent self-controlled physical processes, having tight networking capabilities and efficient interfaces for human interaction. The interactive dimension of CPS reaches its maximum when defined in terms of natural human-machine interfaces (NHMI), i.e., those reducing the technological barriers required for the interaction. This paper presents a NHMI bringing the human decision-making capabilities inside the cybernetic control loop of a smart manufacturing assembly system. The interface allows to control, coordinate and cooperate with an industrial cobot during the task execution

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Recognizing and Preventing Hazards in the Construction Industry

    Get PDF
    The safety handbook for recognizing and preventing safety hazards in the construction industry produced for a construction safety grant
    corecore