1,203 research outputs found

    Extrinsic Dexterity: In-Hand Manipulation with External Forces

    Get PDF
    Abstract — “In-hand manipulation ” is the ability to reposition an object in the hand, for example when adjusting the grasp of a hammer before hammering a nail. The common approach to in-hand manipulation with robotic hands, known as dexterous manipulation [1], is to hold an object within the fingertips of the hand and wiggle the fingers, or walk them along the object’s surface. Dexterous manipulation, however, is just one of the many techniques available to the robot. The robot can also roll the object in the hand by using gravity, or adjust the object’s pose by pressing it against a surface, or if fast enough, it can even toss the object in the air and catch it in a different pose. All these techniques have one thing in common: they rely on resources extrinsic to the hand, either gravity, external contacts or dynamic arm motions. We refer to them as “extrinsic dexterity”. In this paper we study extrinsic dexterity in the context of regrasp operations, for example when switching from a power to a precision grasp, and we demonstrate that even simple grippers are capable of ample in-hand manipulation. We develop twelve regrasp actions, all open-loop and handscripted, and evaluate their effectiveness with over 1200 trials of regrasps and sequences of regrasps, for three different objects (see video [2]). The long-term goal of this work is to develop a general repertoire of these behaviors, and to understand how such a repertoire might eventually constitute a general-purpose in-hand manipulation capability. I

    Multifingered grasping for robotic manipulation

    Get PDF
    Robotic hand increases the adaptability of grasping and manipulating objects with its system.But this added adaptability of grasping convolute the process of grasping the object. The analysis of the grasp is very much complicated and large number of configuration for grasping is to be investigated. Handling of objects with irregular shapes and that of flexible/soft objects by ordinary robot grippers is difficult. It is required that various objects with different shapes or sizes could be grasped and manipulated by one robot hand mechanism for the sake of factory automation and labour saving. Dexterous grippers will be the appropriate solution to such problems. Corresponding to such needs, the present work is towards the design and development of an articulated mechanical hand with five fingers and twenty five degrees-of-freedom having an improved grasp capability. In the work, the distance between the Thumb and Finger and the workspace generated by the hand is calculated so as to know about the size and shape of the object that could be grasped.Further the Force applied by the Fingers and there point of application is also being calculated so as to have a stable force closure grasp. The method introduced in present study reduces the complexity and computational burden of grasp synthesis by examining grasps at the finger level. A detailed study on the force closure grasping capability and quality has been carried out. The workspace of the five fingered hand has been used as the maximum spatial envelope. The problem has been considered with positive grips constructed as non-negative linear combinations of primitive and pure wrenches. The attention has been restricted to systems of wrenches generated by the hand fingers assuming Coulomb friction. In order to validate the algorithm vis-a-vis the designed five fingered dexterous hand, example problems have been solved with multiple sets of contact points on various shaped objects.Since the designed hand is capable of enveloping and grasping an object mechanically, it can be used conveniently and widely in manufacturing automation and for medical rehabilitation purpose. This work presents the kinematic design and the grasping analysis of such a hand

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Systematic object-invariant in-hand manipulation via reconfigurable underactuatuation: introducing the RUTH gripper

    Get PDF
    We introduce a reconfigurable underactuated robot hand able to perform systematic prehensile in-hand manipulations regardless of object size or shape. The hand utilises a two-degree-of-freedom five-bar linkage as the palm of the gripper, with three three-phalanx underactuated fingers—jointly controlled by a single actuator—connected to the mobile revolute joints of the palm. Three actuators are used in the robot hand system in total, one for controlling the force exerted on objects by the fingers through an underactuated tendon system, and two for changing the configuration of the palm and thus the positioning of the fingers. This novel layout allows decoupling grasping and manipulation, facilitating the planning and execution of in-hand manipulation operations. The reconfigurable palm provides the hand with a large grasping versatility, and allows easy computation of a map between task space and joint space for manipulation based on distance-based linkage kinematics. The motion of objects of different sizes and shapes from one pose to another is then straightforward and systematic, provided the objects are kept grasped.This is guaranteed independently and passively by the underactuated fingers using a custom tendon routing method, which allows no tendon length variation when the relative finger base positions change with palm reconfigurations. We analyse the theoretical grasping workspace and grasping and manipulation capability of the hand, present algorithms forcomputing the manipulation map and in-hand manipulation planning, and evaluate all these experimentally. Numericaland empirical results of several manipulation trajectories with objects of different size and shape clearly demonstrate the viability of the proposed concept

    The hydra hand: a mode-switching underactuated gripper with precision and power grasping modes

    Get PDF
    Human hands are able to grasp a wide range of object sizes, shapes, and weights, achieved via reshaping and altering their apparent grasping stiffness between compliant power and rigid precision. Achieving similar versatility in robotic hands remains a challenge, which has often been addressed by adding extra controllable degrees of freedom, tactile sensors, or specialised extra grasping hardware, at the cost of control complexity and robustness. We introduce a novel reconfigurable four-fingered two-actuator underactuated gripper—the Hydra Hand—that switches between compliant power and rigid precision grasps using a single motor, while generating grasps via a single hydraulic actuator—exhibiting adaptive grasping between finger pairs, enabling the power grasping of two objects simultaneously. The mode switching mechanism and the hand's kinematics are presented and analysed, and performance is tested on two grasping benchmarks: one focused on rigid objects, and the other on items of clothing. The Hydra Hand is shown to excel at grasping large and irregular objects, and small objects with its respective compliant power and rigid precision configurations. The hand's versatility is then showcased by executing the challenging manipulation task of safely grasping and placing a bunch of grapes, and then plucking a single grape from the bunch

    The Hydra Hand: A Mode-Switching Underactuated Gripper with Precision and Power Grasping Modes

    Full text link
    Human hands are able to grasp a wide range of object sizes, shapes, and weights, achieved via reshaping and altering their apparent grasping stiffness between compliant power and rigid precision. Achieving similar versatility in robotic hands remains a challenge, which has often been addressed by adding extra controllable degrees of freedom, tactile sensors, or specialised extra grasping hardware, at the cost of control complexity and robustness. We introduce a novel reconfigurable four-fingered two-actuator underactuated gripper -- the Hydra Hand -- that switches between compliant power and rigid precision grasps using a single motor, while generating grasps via a single hydraulic actuator -- exhibiting adaptive grasping between finger pairs, enabling the power grasping of two objects simultaneously. The mode switching mechanism and the hand's kinematics are presented and analysed, and performance is tested on two grasping benchmarks: one focused on rigid objects, and the other on items of clothing. The Hydra Hand is shown to excel at grasping large and irregular objects, and small objects with its respective compliant power and rigid precision configurations. The hand's versatility is then showcased by executing the challenging manipulation task of safely grasping and placing a bunch of grapes, and then plucking a single grape from the bunch.Comment: This paper has been accepted for publication in IEEE Robotics and Automation Letters. For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Accepted Manuscript version arising. 8 pages, 11 figure

    A Distributed System for Robot Manipulator Control

    Get PDF
    This is the final report representing three years of work under the current grant. This work was directed to the development of a distributed computer architecture to function as a force and motion server to a robot system. In the course of this work we developed a compliant contact sensor to provide for transitions between position and force control; we have developed an end-effector capable of securing a stable grasp on an object and a theory of grasping; we have built a controller which minimizes control delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz; we have developed parallel kinematics algorithms for the controller; we have developed a consistent approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have developed a symbolic simplification software package to generate the dynamics equations of a manipulator such that the calculations may be split between background and foreground

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Bionic hand: A brief review

    Get PDF
    The hand is one of the most crucial organs in the human body. Hand loss causes the loss of functionality in daily and work life and psychological disorders for the patients. Hand transplantation is best option to gain most of the hand function. However, the applicability of this option is limited since the side effects and the need for tissue compatibility. Electromechanical hand prosthesis also called bionic hand is an alternative option to hand transplantation. This study presents a quick review of bionic hand technology
    corecore