350 research outputs found

    ROS-based Controller for a Two-Wheeled Self-Balancing Robot

    Get PDF
    In this article, a controller based on a Robot Operating System (ROS) for a two-wheeled self-balancing robot is designed. The proposed ROS architecture is open, allowing the integration of different sensors, actuators, and processing units. The low-cost robot was designed for educational purposes. It used an ESP32 microcontroller as the central unit, an MPU6050 Inertial Measurement Unit sensor, DC motors with encoders, and an L298N integrated circuit as a power stage. The mathematical model is analyzed through Newton-Euler and linearized around an equilibrium point. The control objective is to self-balance the robot to the vertical axis in the presence of disturbances. The proposed control is based on a bounded saturation, which is lightweight and easy to implement in embedded systems with low computational resources. Experimental results are performed in real-time under regulation, conditions far from the equilibrium point, and rejection of external disturbances. The results show a good performance, thus validating the mechanical design, the embedded system, and the control scheme. The proposed ROS architecture allows the incorporation of different modules, such as mapping, autonomous navigation, and manipulation, which contribute to studying robotics, control, and embedded systems

    Towards the Design and Evaluation of Robotic Legs of Quadruped Robots

    Get PDF
    Legged systems have potentials of better mobility than traditional wheeled and tracked vehicles on rough terrain. The reason for the superior mobility of legged systems has been studied for a long period and plenty of robots using legs for locomotion have been developed during recent few decades. However the built legged robots still exhibit insufficiency of expected locomotive ability comparing with their counterparts in nature with similar size. The reason may be complicated and systematic associated with several aspects of the development such as the design, key components, control & planning and/or test and evaluation. The goal of this thesis is to close the gap between legged robots research & development and practical application and deployment. The research presented in this thesis focuses on three aspects including morphological parameters of quadruped robots, optimal design for knee joint mechanism and the development of a novel test bench\u2014 Terrain Simulator Platform. The primary motivation and target for legged robots developing is to overcome the challenging terrain. However few legged robots take the feature of terrain into consideration when determining the morphological parameters, such as limb length and knee orientation for robots. In this thesis, the relationship between morphological parameters of quadruped robots and terrain features are studied by taking a ditch/gap as an example. The influence of diverse types of morphological parameters including limb length, limb mass, the center-of-mass position in limbs and knee configuration on the ditch crossing capability are presented. In order to realize extended motion range and desired torque profile, the knee joint of HyQ2max adopts a six-bar linkage mechanism as transmission. Owing to the complexity of closed-loop kinematic chain, the transmission ratio is difficult to design. In this thesis, I used a static equilibrium based approach to derive the transmission relationship and study the singularity conditions. Further desired torque profile of knee joint are realized by a multi-variable geometric parameters optimization. For the test and performance evaluation of robotic leg, I designed and constructed a novel test bench\u2014 Terrain Simulator Platform (TSP). The main function of the TSP is to provide sufficient test conditions for robotic leg by simulating various terrain features. Thus working status of robotic leg can be known before the construction of the whole robot. The core of the TSP is a 3-PRR planar parallel mechanism. In this thesis, the structure design and implementation, the kinematics including singularity, workspace etc, and dynamics of this 3-PRR mechanism are presented

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Discrete-time neural network based state observer with neural network based control formulation for a class of systems with unmatched uncertainties

    Get PDF
    An observer is a dynamic system that estimates the state variables of another system using noisy measurements, either to estimate unmeasurable states, or to improve the accuracy of the state measurements. The Modified State Observer (MSO) is a technique that uses a standard observer structure modified to include a neural network to estimate system states as well as system uncertainty. It has been used in orbit uncertainty estimation and atmospheric reentry uncertainty estimation problems to correctly estimate unmodeled system dynamics. A form of the MSO has been used to control a nonlinear electrohydraulic system with parameter uncertainty using a simplified linear model. In this paper an extension of the MSO into discrete-time is developed using Lyapunov stability theory. Discrete-time systems are found in all digital hardware implementations, such as that found in a Martian rover, a quadcopter UAV, or digital flight control systems, and have the added benefit of reduced computation time compared to continuous systems. The derived adaptive update law guarantees stability of the error dynamics and boundedness of the neural network weights. To prove the validity of the discrete-time MSO (DMSO) simulation studies are performed using a two wheeled inverted pendulum (TWIP) robot, an unstable nonlinear system with unmatched uncertainties. Using a linear model with parameter uncertainties, the DMSO is shown to correctly estimate the state of the system as well as the system uncertainty, providing state estimates orders of magnitude more accurate, and in periods of time up to 10 times faster than the Discrete Kalman Filter. The DMSO is implemented on an actual TWIP robot to further validate the performance and demonstrate the applicability to discrete-time systems found in many aerospace applications. Additionally, a new form of neural network control is developed to compensate for the unmatched uncertainties that exist in the TWIP system using a state variable as a virtual control input. It is shown that in all cases the neural network based control assists with the controller effectiveness, resulting in the most effective controller, performing on average 53.1% better than LQR control alone --Abstract, page iii

    Development of a Hybrid Powered 2D Biped Walking Machine Designed for Rough Terrain Locomotion

    Get PDF
    Biped robots hold promise as terrestrial explorers because they require a single discrete foothold to place their next step. However, biped robots are multi-input multi-output dynamically unstable machines. This makes walking on rough terrain difficult at best. Progress has been made with non-periodic rough terrain like stairs or inclines with fully active walking machines. Terrain that requires the walker to change its gait pattern from a standard walk is still problematic. Most walking machines have difficulty detecting or responding to the small perturbations induced by this type of terrain. These small perturbations can lead to unstable gait cycles and possibly a fall. The Intelligent Systems and Automation Lab at the University of Kansas has built a three legged 2D biped walking machine to be used as a test stand for studying rough terrain walking. The specific aim of this research is to investigate how biped walkers can best maintain walking stability when acted upon by small perturbations caused by periodic rough terrain. The first walking machine prototype, referred to as Jaywalker has two main custom actuation systems. The first is the hip ratchet system. It allows the walker to have either a passive or active hip swing. The second is the hybrid parallel ankle actuator. This new actuator uses a pneumatic ram and stepper motor in parallel to produce an easily controlled high torque output. In open loop control it has less than a 1° tracking error and 0.065 RPM velocity error compared to a standard stepper motor. Step testing was conducted using the Jaywalker, with a passive hip, to determine if a walker with significant leg mass could walk without full body actuation. The results of testing show the Jaywalker is ultimately not capable of walking with a passive hip. However, the walking motion is fine until the terminal stance phase. At this point the legs fall quickly towards the ground as the knee extends the shank. This quick step phenomenon is caused by increased speeds and forces about the leg and hip caused by the extension of the shank. This issue can be overcome by fully actuating the hip, or by adding counterbalances to the legs about the hip

    Development of a Two-Wheel Inverted Pendulum and a Cable Climbing Robot

    Get PDF
    The research work in this thesis constitutes two parts: one is the development and control of a Two-wheel inverted pendulum (TWIP) robot and the other is the design and manufacturing of a cable climbing robot (CCR) for suspension bridge inspection. The first part of this research investigates a sliding mode controller for self-balancing and stabilizing a two-wheel inverted pendulum (TWIP) robot. The TWIP robot is constructed by using two DC gear motors with a high-resolution encoder and zero backlashes, but with friction. It is a highly nonlinear and unstable system, which poses challenges for controller design. In this study, a dynamic mathematical model is built using the Lagrangian function method. And a sliding mode controller (SMC) is proposed for auto-balancing and yaw rotation. A gyro and an accelerometer are adopted to measure the pitch angle and pitch rate. The effect on the sensor’s installation location is analyzed and compensated, and the precision of the pose estimation is improved accordingly. A comparison of the proposed SMC controller with a proportional-integral-derivative (PID) controller and state feedback controller (SFC) with linear quadratic regulation (LQR) has been conducted. The simulation and experimental test results demonstrate the SMC controller outperforms the PID controller and SFC in terms of transient performance and disturbance rejection ability. In the second part of the research, a wheel-based cable climbing robotic system which can climb up and down the cylindrical cables for the inspection of the suspension bridges is designed and manufactured. Firstly, a rubber track climbing mechanism is designed to generate enough adhesion force for the robot to stick to the surface of a cable and the driving force for the robot to climb up and down the cable, while not too big to damage the cable. The climbing system includes chains and sprockets driven by the DC motors and adhesion system. The unique design of the adhesion mechanism lies in that it can maintain the adhesion force even when the power is lost while the system works as a suspension mechanism. Finally, a safe-landing mechanism is developed to guarantee the safety of the robot during inspection operations on cables. The robot has been fully tested in the inspection of Xili bridge, Guangzhou, P.R. China
    • …
    corecore