631 research outputs found

    Teleoperation Methods for High-Risk, High-Latency Environments

    Get PDF
    In-Space Servicing, Assembly, and Manufacturing (ISAM) can enable larger-scale and longer-lived infrastructure projects in space, with interest ranging from commercial entities to the US government. Servicing, in particular, has the potential to vastly increase the usable lifetimes of satellites. However, the vast majority of spacecraft on low Earth orbit today were not designed to be serviced on-orbit. As such, several of the manipulations during servicing cannot easily be automated and instead require ground-based teleoperation. Ground-based teleoperation of on-orbit robots brings its own challenges of high latency communications, with telemetry delays of several seconds, and difficulties in visualizing the remote environment due to limited camera views. We explore teleoperation methods to alleviate these difficulties, increase task success, and reduce operator load. First, we investigate a model-based teleoperation interface intended to provide the benefits of direct teleoperation even in the presence of time delay. We evaluate the model-based teleoperation method using professional robot operators, then use feedback from that study to inform the design of a visual planning tool for this task, Interactive Planning and Supervised Execution (IPSE). We describe and evaluate the IPSE system and two interfaces, one 2D using a traditional mouse and keyboard and one 3D using an Intuitive Surgical da Vinci master console. We then describe and evaluate an alternative 3D interface using a Meta Quest head-mounted display. Finally, we describe an extension of IPSE to allow human-in-the-loop planning for a redundant robot. Overall, we find that IPSE improves task success rate and decreases operator workload compared to a conventional teleoperation interface

    Design of autonomous robotic system for removal of porcupine crab spines

    Get PDF
    Among various types of crabs, the porcupine crab is recognized as a highly potential crab meat resource near the off-shore northwest Atlantic ocean. However, their long, sharp spines make it difficult to be manually handled. Despite the fact that automation technology is widely employed in the commercial seafood processing industry, manual processing methods still dominate in today’s crab processing, which causes low production rates and high manufacturing costs. This thesis proposes a novel robot-based porcupine crab spine removal method. Based on the 2D image and 3D point cloud data captured by the Microsoft Azure Kinect 3D RGB-D camera, the crab’s 3D point cloud model can be reconstructed by using the proposed point cloud processing method. After that, the novel point cloud slicing method and the 2D image and 3D point cloud combination methods are proposed to generate the robot spine removal trajectory. The 3D model of the crab with the actual dimension, robot working cell, and endeffector are well established in Solidworks [1] and imported into the Robot Operating System (ROS) [2] simulation environment for methodology validation and design optimization. The simulation results show that both the point cloud slicing method and the 2D and 3D combination methods can generate a smooth and feasible trajectory. Moreover, compared with the point cloud slicing method, the 2D and 3D combination method is more precise and efficient, which has been validated in the real experiment environment. The automated experiment platform, featuring a 3D-printed end-effector and crab model, has been successfully set up. Results from the experiments indicate that the crab model can be accurately reconstructed, and the central line equations of each spine were calculated to generate a spine removal trajectory. Upon execution with a real robot arm, all spines were removed successfully. This thesis demonstrates the proposed method’s capability to achieve expected results and its potential for application in various manufacturing processes such as painting, polishing, and deburring for parts of different shapes and materials

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks

    Artificial Intelligence and International Conflict in Cyberspace

    Get PDF
    This edited volume explores how artificial intelligence (AI) is transforming international conflict in cyberspace. Over the past three decades, cyberspace developed into a crucial frontier and issue of international conflict. However, scholarly work on the relationship between AI and conflict in cyberspace has been produced along somewhat rigid disciplinary boundaries and an even more rigid sociotechnical divide – wherein technical and social scholarship are seldomly brought into a conversation. This is the first volume to address these themes through a comprehensive and cross-disciplinary approach. With the intent of exploring the question ‘what is at stake with the use of automation in international conflict in cyberspace through AI?’, the chapters in the volume focus on three broad themes, namely: (1) technical and operational, (2) strategic and geopolitical and (3) normative and legal. These also constitute the three parts in which the chapters of this volume are organised, although these thematic sections should not be considered as an analytical or a disciplinary demarcation

    Digital technologies for enhancing crane safety in construction: a combined quantitative and qualitative analysis

    Get PDF
    A digital-enabled safety management approach is increasingly crucial for crane operations, which are common yet highly hazardous activities sensitive to environmental dynamics on construction sites. However, there exists a knowledge gap regarding the current status and developmental trajectory of this approach. Therefore, this paper aims to provide a comprehensive overview of digital technologies for enhancing crane safety, drawing insights from articles published between 2008 and 2021. Special emphasis is placed on the sensing devices currently in use for gathering “man-machine-environment” data, as well as the communication networks, data processing algorithms, and intuitive visualization platforms employed. Through qualitative and quantitative analysis of the literature, it is evident that while notable advancements have been made in digital-enabled crane safety management, these achievements remain largely confined to the experimentation stage. Consequently, a framework is proposed in this study to facilitate the practical implementation of digital-enabled crane safety management. Furthermore, recommendations for future research directions are presented. This comprehensive review offers valuable guidance for ensuring safe crane operations in the construction industry

    Data ethics : building trust : how digital technologies can serve humanity

    Get PDF
    Data is the magic word of the 21st century. As oil in the 20th century and electricity in the 19th century: For citizens, data means support in daily life in almost all activities, from watch to laptop, from kitchen to car, from mobile phone to politics. For business and politics, data means power, dominance, winning the race. Data can be used for good and bad, for services and hacking, for medicine and arms race. How can we build trust in this complex and ambiguous data world? How can digital technologies serve humanity? The 45 articles in this book represent a broad range of ethical reflections and recommendations in eight sections: a) Values, Trust and Law, b) AI, Robots and Humans, c) Health and Neuroscience, d) Religions for Digital Justice, e) Farming, Business, Finance, f) Security, War, Peace, g) Data Governance, Geopolitics, h) Media, Education, Communication. The authors and institutions come from all continents. The book serves as reading material for teachers, students, policy makers, politicians, business, hospitals, NGOs and religious organisations alike. It is an invitation for dialogue, debate and building trust! The book is a continuation of the volume “Cyber Ethics 4.0” published in 2018 by the same editors

    Predictive QoS for cellular connected UAV payload communication

    Get PDF
    Unmanned aerial vehicles (UAVs), or drones, are revolutionizing industries due to their versatility, affordability and applicability. Reliable communication links are essential for UAV operations, especially for beyond visual line of sight scenarios where drones are flown beyond the operator’s line of sight. Cellular networks, particularly in the context of 5G and beyond, offer potential solutions to meet the data-intensive demands of UAV applications. This study explores the feasibility of predictive quality of service for forecasting uplink (UL) throughput quality of service (QoS) parameter in UAV payload communication links. Comprehensive field tests were conducted to ensure accurate real-world results, as simulations may not fully capture real-world complexities. Field trial measurements were conducted in a sub-urban area to evaluate drone performance at various altitudes and bands. This sheds light on potential challenges and trade-offs for cellular-connected drones and their coexistence with terrestrial users. Drones flying at high altitudes often experience line of sight propagation, causing them to undergo frequent handovers between multiple base stations. Field trials demonstrated that drones connected to a 700 MHz signal encountered minimal interference and no handovers. Conversely, drones connected to the 3500 MHz frequency band faced multiple handovers, highlighting the complexities of UAV-cellular integration and emphasizing the significance of frequency band selection in drone applications. By harnessing machine learning (ML) models and comparative analysis of centralized and federated learning methods, this research investigates ML model performances in forecasting UL throughput based on prediction accuracy. The findings emphasize the importance of diverse training data and highlight the impact of frequency bands on UAV communication. These insights lay the groundwork for addressing UAV communication complexities and advancing the integration of machine learning and network dynamics for improving UAV operations

    Limited Information Shared Control and its Applications to Large Vehicle Manipulators

    Get PDF
    Diese Dissertation beschĂ€ftigt sich mit der kooperativen Regelung einer mobilen Arbeitsmaschine, welche aus einem Nutzfahrzeug und einem oder mehreren hydraulischen Manipulatoren besteht. Solche Maschinen werden fĂŒr Aufgaben in der Straßenunterhaltungsaufgaben eingesetzt. Die Arbeitsumgebung des Manipulators ist unstrukturiert, was die Bestimmung einer Referenztrajektorie erschwert oder unmöglich macht. Deshalb wird in dieser Arbeit ein Ansatz vorgeschlagen, welcher nur das Fahrzeug automatisiert, wĂ€hrend der menschliche Bediener ein Teil des Systems bleibt und den Manipulator steuert. Eine solche Teilautomatisierung des Gesamtsystems fĂŒhrt zu einer speziellen Klasse von Mensch-Maschine-Interaktionen, welche in der Literatur noch nicht untersucht wurde: Eine kooperative Regelung zwischen zwei Teilsystemen, bei der die Automatisierung keine Informationen von dem vom Menschen gesteuerten Teilsystem hat. Deswegen wird in dieser Arbeit ein systematischer Ansatz der kooperativen Regelung mit begrenzter Information vorgestellt, der den menschlichen Bediener unterstĂŒtzen kann, ohne die Referenzen oder die SystemzustĂ€nde des Manipulators zu messen. Außerdem wird ein systematisches Entwurfskonzept fĂŒr die kooperative Regelung mit begrenzter Information vorgestellt. FĂŒr diese Entwurfsmethode werden zwei neue Unterklassen der sogenannten Potenzialspiele eingefĂŒhrt, die eine systematische Berechnung der Parameter der entwickelten kooperativen Regelung ohne manuelle Abstimmung ermöglichen. Schließlich wird das entwickelte Konzept der kooperativen Regelung am Beispiel einer großen mobilen Arbeitsmaschine angewandt, um seine Vorteile zu ermitteln und zu bewerten. Nach der Analyse in Simulationen wird die praktische Anwendbarkeit der Methode in drei Experimenten mit menschlichen Probanden an einem Simulator untersucht. Die Ergebnisse zeigen die Überlegenheit des entwickelten kooperativen Regelungskonzepts gegenĂŒber der manuellen Steuerung und der nicht-kooperativen Steuerung hinsichtlich sowohl der objektiven Performanz als auch der subjektiven Bewertung der Probanden. Somit zeigt diese Dissertation, dass die kooperative Regelung mobiler Arbeitsmaschinen mit den entwickelten theoretischen Konzepten sowohl hilfreich als auch praktisch anwendbar ist

    Apprenticeship Bootstrapping for Autonomous Aerial Shepherding of Ground Swarm

    Full text link
    Aerial shepherding of ground vehicles (ASGV) musters a group of uncrewed ground vehicles (UGVs) from the air using uncrewed aerial vehicles (UAVs). This inspiration enables robust uncrewed ground-air coordination where one or multiple UAVs effectively drive a group of UGVs towards a goal. Developing artificial intelligence (AI) agents for ASGV is a non-trivial task due to the sub-tasks, multiple skills, and their non-linear interaction required to synthesise a solution. One approach to developing AI agents is Imitation learning (IL), where humans demonstrate the task to the machine. However, gathering human data from complex tasks in human-swarm interaction (HSI) requires the human to perform the entire job, which could lead to unexpected errors caused by a lack of control skills and human workload due to the length and complexity of ASGV. We hypothesise that we can bootstrap the overall task by collecting human data from simpler sub-tasks to limit errors and workload for humans. Therefore, this thesis attempts to answer the primary research question of how to design IL algorithms for multiple agents. We propose a new learning scheme called Apprenticeship Bootstrapping (AB). In AB, the low-level behaviours of the shepherding agents are trained from human data using our proposed hierarchical IL algorithms. The high-level behaviours are then formed using a proposed gesture demonstration framework to collect human data from synthesising more complex controllers. The transferring mechanism is performed by aggregating the proposed IL algorithms. Experiments are designed using a mixed environment, where the UAV flies in a simulated robotic Gazebo environment, while the UGVs are physical vehicles in a natural environment. A system is designed to allow switching between humans controlling the UAVs using low-level actions and humans controlling the UAVs using high-level actions. The former enables data collection for developing autonomous agents for sub-tasks. At the same time, in the latter, humans control the UAV by issuing commands that call the autonomous agents for the sub-tasks. We baseline the learnt agents against Str\"{o}mbom scripted behaviours and show that the system can successfully generate autonomous behaviours for ASGV

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • 

    corecore