10,137 research outputs found

    Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao

    Full text link
    In order to increase the efficiency of cacao tree resistance to witches¿ broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease. (Résumé d'auteur

    review marcatori genetici acquacoltura

    Get PDF

    Molecular Markers and Marker-Assisted Breeding in Plants

    Get PDF

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven

    Bioinformatics tools for development of fast and cost effective simple sequence repeat (SSR), and single nucleotide polymorphisms (SNP) markers from expressed sequence tags (ESTs)

    Get PDF
    The development of current molecular biology techniques has led to the generation of huge amount of gene sequence information under the expressed sequence tag (EST) sequencing projects on a large number of plant species. This has opened a new era in crop molecular breeding with identification and/or development of a new class of useful DNA markers called genic molecular markers (GMMs). These markers represent the functional component of the genome in contrast to all other random DNA markers (RMMs). Many recent studies have demonstrated that GMMs may be superior to RMMs for use in the marker assisted selection, comparative mapping and exploration of functional genetic diversity in the germplasms adapted to different environment. Therefore, identification of DNA sequences which can be used as markers remains fundamental to the development of GMMs. Amongst others; bioinformatics approaches are very useful for development of molecular markers, making their development much faster and cheaper. Already, a number of computer programs have been implemented that aim at identifying molecular markers from sequence data. A revision of current bioinformatics tools for development of genic molecular markers is, therefore, crucial in this phase. This mini-review mainly provides an overview of different bioinformatics tools available and its use in marker development with particular reference to SNP and SSR markers.Keywords: Genic molecular marker, simple sequence repeat (SSR), and single nucleotide polymorphisms (SNP) markers from expressed sequence tags (ESTs).African Journal of Biotechnology Vol. 12(30), pp. 4713-472

    High-Throughput Genomics Enhances Tomato Breeding Efficiency

    Get PDF
    Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits

    Future trends in Animal Breeding due to new genetic tecnologies

    Full text link
    The Darwin theory of evolution by natural selection is based on three principles: (a) variation; (b) inheritance; and (c) natural selection. Here, I take these principles as an excuse to review some topics related to the future research prospects in Animal Breeding. With respect to the first principle I describe two forms of variation different from mutation that are becoming increasingly important: variation in copy number and microRNAs. With respect to the second principle I comment on the possible relevance of non-mendelian inheritance, the so-called epigenetic effects, of which the genomic imprinting is the best characterized in domestic species. Regarding selection principle I emphasize the importance of selection for social traits and how this could contribute to both productivity and animal welfare. Finally, I analyse the impact of molecular biology in Animal Breeding, the achievements and limitations of quantitative trait locus and classical marker-assisted selection and the future of genomic selectio
    • 

    corecore