711 research outputs found

    Recommendations for the quantitative analysis of landslide risk

    Get PDF
    This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts.JRC.H.5-Land Resources Managemen

    Elements at risk

    Get PDF

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water cours

    Remote sensing technology for disaster mitigation and regional infrastructure planning in urban area: a review

    Get PDF
    A Very high intensity of regional development is ubiquitous in urban areas. Therefore, urban development requires a proper spatial development strategy in many facets, especially social aspect and disaster potential. The essence of social aspect lies in the prevailing norms and local wisdom that have long existed and become the basis of community life. Inducing various effects on infrastructure development, disaster potential has to be considered as well. Disaster mitigation measures can start with the use of continually developing remote sensing technology, which provides a basis for preparing sustainable development planning. The realization of these measures in urban areas demands specific adjustment to the environmental conditions. This study aimed to examine the capacity of remote sensing data to support disaster mitigation and infrastructure planning based on energy conservation in urban areas. The results indicate that remote sensing technology can be an option for sustainable development planning in urban areas

    Environmental monitoring: landslide assessment and risk management (Test site: Vernazza, Cinque Terre Natural Park)

    Get PDF
    Natural disasters, whether of meteorological origin such as cyclones, floods, tornadoes and droughts or having geological nature such as earthquakes, volcanoes and landslide, are well known for their devastating impacts on human life, economy and environment. Over recent decades, the people and the societies are becoming more vulnerable; although the frequency of natural events may be constant, human activities contribute to their increased intensity. Indeed, every year millions of people are affected by natural disasters globally and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. The PhD work is part of the activities for the support and development of methodologies useful to improve the management of environmental emergencies. In particular, it focused on the analysis of environmental monitoring and disaster risk management, a systematic approach to identify, to assess and to reduce the potential risks produced by a disaster. This method (Disaster Risk Management) aims to reduce socio-economic vulnerabilities and deals with natural and man-made events. In the PhD thesis, in particular, the slope movements have been evaluated. Slope failures are generally not so costly as earthquakes or major floods, but they are more widespread, and over the years may cause more property loss than any other geological hazard. In many developing regions slope failures constitute a continuing and serious impact on the social and economic structure. Specifically, the Italian territory has always been subject to instability phenomena, because of the geological and morphological characteristic and because of "extreme" weather events that are repeated more frequently than in the past, in relation to climate change. Currently these disasters lead to the largest number of victims and damages to settlements, infrastructure and historical and cultural environmental, after the earthquakes. The urban development, especially in recent decades, resulted in an increase of the assets at risk and unstable areas, often due to constant human intervention badly designed that led to instability also places previously considered "safe". Prevention is therefore essential to minimize the damages caused by landslides The objectives of the conducted research were to investigate the different techniques and to check their potentiality, in order to evaluate the most appropriate instrument for landslide hazard assessment in terms of better compromise between time to perform the analysis and expected results. The attempt is to evaluate which are the best methodologies to use according to the scenario, taking into consideration both reachable accuracies and time constraints. Careful considerations will be performed on strengths, weaknesses and limitations inherent to each methodology. The characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. This is an important factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. The test site was the municipality of Vernazza, which in October 2011 was subject to a extreme rainfall which led to the occurrence of a series of landslides along the Vernazzola stream, which have emphasized the flood event that affected the water course

    Techniques, advances, problems and issues in numerical modelling of landslide hazard

    Get PDF
    Slope movements (e.g. landslides) are dynamic systems that are complex in time and space and closely linked to both inherited and current preparatory and triggering controls. It is not yet possible to assess in all cases conditions for failure, reactivation and rapid surges and successfully simulate their transient and multi-dimensional behaviour and development, although considerable progress has been made in isolating many of the key variables and elementary mechanisms and to include them in physically-based models for landslide hazard assessments. Therefore, the objective of this paper is to review the state-of-the-art in the understanding of landslide processes and to identify some pressing challenges for the development of our modelling capabilities in the forthcoming years for hazard assessment. This paper focuses on the special nature of slope movements and the difficulties related to simulating their complex time-dependent behaviour in mathematical, physically-based models. It analyses successively the research frontiers in the recognition of first-time failures (pre-failure and failure stages), reactivation and the catastrophic transition to rapid gravitational processes (post-failure stage). Subsequently, the paper discusses avenues to transfer local knowledge on landslide activity to landslide hazard forecasts on regional scales and ends with an outline how geomorphological investigations and supporting monitoring techniques could be applied to improve the theoretical concepts and the modelling performance of physically-based landslide models at different spatial and temporal scales

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Landslides

    Get PDF
    Landslides - Investigation and Monitoring offers a comprehensive overview of recent developments in the field of mass movements and landslide hazards. Chapter authors use in situ measurements, modeling, and remotely sensed data and methods to study landslides. This book provides a thorough overview of the latest efforts by international researchers on landslides and opens new possible research directions for further novel developments

    Gis-Based Approaches To Slope Stability Analysis And Earthquake -Induced Landslide Hazard Zonation

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006This dissertation presents newly developed GIS-based deterministic and probabilistic approaches for slope stability analysis and earthquake-induced landslide hazard zonation. The described approaches combine numerical slope stability analysis with GIS spatial analysis to evaluate earthquake-induced slope failures, both shallow and deep-seated. The study has four major research components. The first component is a GIS-based procedure which was developed based on one-, two-, and three-dimensional (1D, 2D, and 3D) deterministic approaches to slope stability analysis and landslide hazard zonation. Slope stability methods in the GIS-based procedure included the infinite slope model, the block sliding model, the ordinary method of slices, the Bishop simplified method, and the Hovland's column method. The second component focuses on causative factors analysis of earthquake-induced landslide hazards. This component also discusses the determination of peak ground acceleration for slope stability analysis. The third component consists of an evaluation of the topographic effect of ground motion and the seismic response in the Balsamo Ridge area in Nueva San Salvador. The fourth component is concerned with the regional and site-specific landslide hazard zonation, using newly developed models for landslide hazard assessment in Nueva San Salvador. The slope stability and landslide susceptibility were mapped in terms of slope stability index (factor of safety, critical acceleration, Newmark displacement, failure probability, and reliability index). The landslides triggered by an earthquake on January 13, 2001 in El Salvador provide a setting for the calibration of results from GIS-based approaches. The procedures developed in this research proved to be feasible and cost-effective for slope stability analysis and earthquake-induced landslide hazard zonation
    • 

    corecore