3,037 research outputs found

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    ASGARDS-H: Enabling Advanced Smart Grid cyber-physical Attacks, Risk and Data Studies with HELICS

    Get PDF
    Smart infrastructures are increasingly built with cyber-physical systems that connect physical operational technology (OT) devices, networks and systems over a cyberspace of ubiquitous information technology (IT). A key objective of such interconnection is to offer a data coverage that will enable comprehensive visibility of dynamic environments and events. The arrival of Internet-of-Things, 5G, and beyond in smart infrastructures will enable the collection of unprecedented volumes of data from these various sources for critical visibility of the entire infrastructure with advanced situational awareness. To break the barriers between the different data silos that limit advanced machine learning techniques against cyber-physical attacks and damages and to allow the development of advanced cross-domain awareness models, the thesis tried to develop a modular, complete and scalable co-simulation platform allowing the generation of standardized datasets for research and development of smart distribution grid security. It addresses the lack of realistic training and testing data for machine learning models to enable the development of more advanced techniques. Our contributions are as follows. First, a modular platform for software-based co-simulation testbed generation is developed using the HELICS co-simulation framework. Second, scenarios of instabilities, faults, cyber-physical attacks are built to allow the generation of a realistic and multi-sourced dataset. Third, well-defined datasets are generated from the developed scenarios to enable and empower data-driven approaches toward smart distribution grid security

    MiniCPS: A toolkit for security research on CPS Networks

    Full text link
    In recent years, tremendous effort has been spent to modernizing communication infrastructure in Cyber-Physical Systems (CPS) such as Industrial Control Systems (ICS) and related Supervisory Control and Data Acquisition (SCADA) systems. While a great amount of research has been conducted on network security of office and home networks, recently the security of CPS and related systems has gained a lot of attention. Unfortunately, real-world CPS are often not open to security researchers, and as a result very few reference systems and topologies are available. In this work, we present MiniCPS, a CPS simulation toolbox intended to alleviate this problem. The goal of MiniCPS is to create an extensible, reproducible research environment targeted to communications and physical-layer interactions in CPS. MiniCPS builds on Mininet to provide lightweight real-time network emulation, and extends Mininet with tools to simulate typical CPS components such as programmable logic controllers, which use industrial protocols (Ethernet/IP, Modbus/TCP). In addition, MiniCPS defines a simple API to enable physical-layer interaction simulation. In this work, we demonstrate applications of MiniCPS in two example scenarios, and show how MiniCPS can be used to develop attacks and defenses that are directly applicable to real systems.Comment: 8 pages, 6 figures, 1 code listin

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    • …
    corecore