4,020 research outputs found

    A versatile and reconfigurable microassembly workstation

    Get PDF
    In this paper, a versatile and reconfigurable microassembly workstation designed and realized as a research tool for investigation of the problems in microassembly and micromanipulation processes and recent developments on mechanical and control structure of the system with respect to the previous workstation are presented. These developments include: (i) addition of a manipulator system to realize more complicated assembly and manipulation tasks, (ii) addition of extra DOF for the vision system and sample holder stages in order to make the system more versatile (iii) a new optical microscope as the vision system in order to visualize the microworld and determine the position and orientation of micro components to be assembled or manipulated, (iv) a modular control system hardware which allows handling more DOF. In addition several experiments using the workstation are presented in different modes of operation like tele-operated, semiautomated and fully automated by means of visual based schemes

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    Modularity in robotic systems

    Get PDF
    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom

    Miniaturized modular manipulator design for high precision assembly and manipulation tasks

    Get PDF
    In this paper, design and control issues for the development of miniaturized manipulators which are aimed to be used in high precision assembly and manipulation tasks are presented. The developed manipulators are size adapted devices, miniaturized versions of conventional robots based on well-known kinematic structures. 3 degrees of freedom (DOF) delta robot and a 2 DOF pantograph mechanism enhanced with a rotational axis at the tip and a Z axis actuating the whole mechanism are given as examples of study. These parallel mechanisms are designed and developed to be used in modular assembly systems for the realization of high precision assembly and manipulation tasks. In that sense, modularity is addressed as an important design consideration. The design procedures are given in details in order to provide solutions for miniaturization and experimental results are given to show the achieved performances

    Development of system supervision and control software for a micromanipulation system

    Get PDF
    This paper presents the realization of a modular software architecture that is capable of handling the complex supervision structure of a multi degree of freedom open architecture and reconfigurable micro assembly workstation. This software architecture initially developed for a micro assembly workstation is later structured to form a framework and design guidelines for precise motion control and system supervision tasks explained subsequently through an application on a micro assembly workstation. The software is separated by design into two different layers, one for real-time and the other for non-realtime. These two layers are composed of functional modules that form the building blocks for the precise motion control and the system supervision of complex mechatronics systems

    Design of an Anthropomorphic, Compliant, and Lightweight Dual Arm for Aerial Manipulation

    Get PDF
    This paper presents an anthropomorphic, compliant and lightweight dual arm manipulator designed and developed for aerial manipulation applications with multi-rotor platforms. Each arm provides four degrees of freedom in a human-like kinematic configuration for end effector positioning: shoulder pitch, roll and yaw, and elbow pitch. The dual arm, weighting 1.3 kg in total, employs smart servo actuators and a customized and carefully designed aluminum frame structure manufactured by laser cut. The proposed design reduces the manufacturing cost as no computer numerical control machined part is used. Mechanical joint compliance is provided in all the joints, introducing a compact spring-lever transmission mechanism between the servo shaft and the links, integrating a potentiometer for measuring the deflection of the joints. The servo actuators are partially or fully isolated against impacts and overloads thanks to the ange bearings attached to the frame structure that support the rotation of the links and the deflection of the joints. This simple mechanism increases the robustness of the arms and safety in the physical interactions between the aerial robot and the environment. The developed manipulator has been validated through different experiments in fixed base test-bench and in outdoor flight tests.Unión Europea H2020-ICT-2014- 644271Ministerio de Economía y Competitividad DPI2015-71524-RMinisterio de Economía y Competitividad DPI2017-89790-

    Towards a universal end effector : the design and development of production technology's intelligent robot hand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Engineering and Automation at Massey University

    Get PDF
    Research into robot hands for industrial use began in the early 1980s and there are now many examples of robot hands in existence. The reason for research into robot hands is that standard robot end effectors have to be designed for each application and are therefore costly. A universal end effector is needed that will be able to perform any parts handling operation or use other tools for other industrial operations. Existing robot hand research would therefore benefit from new concepts, designs and control systems. The Department of Production Technology is developing an intelligent robot hand of a novel configuration, with the ultimate aim of producing a universal end effector. The concept of PTIRH (Production Technology's Intelligent Robot Hand) is that it is a multi-fingered manipulator with a configuration of two thumbs and two fingers. Research by the author for this thesis concentrated on five major areas. First, the background research into the state of the art in robot hand research. Second, the initiation, development and analysis of the novel configuration concept of PTIRH. Third, specification, testing and analysis of air muscle actuation, including design, development and testing of a servo pneumatic control valve for the air muscles. Fourth, choice of sensors for the robot hand, including testing and analysis of two custom made air pressure sensors. Fifth, definition, design, construction, development, testing and analysis of the mechanical structure for an early prototype of PTIRH. Development of an intelligent controller for PTIRH was outside the scope of the author's research. The results of the analysis on the air muscles showed that they could be a suitable direct drive actuator for an intelligent robotic hand. The force, pressure and position sensor results indicate that the sensors could form the basis of the feedback loop for an intelligent controller. The configuration of PTIRH enables it to grasp objects with little reliance on friction. This was demonstrated with an early prototype of the robot hand, which had one finger with actuation and three other static digits, by successfully manually arranging the digits into stable grasps of various objects

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established
    corecore