10,220 research outputs found

    The Case for Quantum Key Distribution

    Get PDF
    Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security; version 2 minor content revision

    E-Voting in an ubicomp world: trust, privacy, and social implications

    Get PDF
    The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    PLACE Events 2016-2017

    Get PDF
    This document describes PLACE events at Linfield College for 2016-2017

    The Crypto-democracy and the Trustworthy

    Full text link
    In the current architecture of the Internet, there is a strong asymmetry in terms of power between the entities that gather and process personal data (e.g., major Internet companies, telecom operators, cloud providers, ...) and the individuals from which this personal data is issued. In particular, individuals have no choice but to blindly trust that these entities will respect their privacy and protect their personal data. In this position paper, we address this issue by proposing an utopian crypto-democracy model based on existing scientific achievements from the field of cryptography. More precisely, our main objective is to show that cryptographic primitives, including in particular secure multiparty computation, offer a practical solution to protect privacy while minimizing the trust assumptions. In the crypto-democracy envisioned, individuals do not have to trust a single physical entity with their personal data but rather their data is distributed among several institutions. Together these institutions form a virtual entity called the Trustworthy that is responsible for the storage of this data but which can also compute on it (provided first that all the institutions agree on this). Finally, we also propose a realistic proof-of-concept of the Trustworthy, in which the roles of institutions are played by universities. This proof-of-concept would have an important impact in demonstrating the possibilities offered by the crypto-democracy paradigm.Comment: DPM 201

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page
    • 

    corecore