1,390 research outputs found

    Multivariable Iterative Learning Control Design Procedures: from Decentralized to Centralized, Illustrated on an Industrial Printer

    Get PDF
    Iterative Learning Control (ILC) enables high control performance through learning from measured data, using only limited model knowledge in the form of a nominal parametric model. Robust stability requires robustness to modeling errors, often due to deliberate undermodeling. The aim of this paper is to develop a range of approaches for multivariable ILC, where specific attention is given to addressing interaction. The proposed methods either address the interaction in the nominal model, or as uncertainty, i.e., through robust stability. The result is a range of techniques, including the use of the structured singular value (SSV) and Gershgorin bounds, that provide a different trade-off between modeling requirements, i.e., modeling effort and cost, and achievable performance. This allows control engineers to select the approach that fits the modeling budget and control requirements. This trade-off is demonstrated in a case study on an industrial flatbed printer

    High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Get PDF
    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures

    Methods of system identification, parameter estimation and optimisation applied to problems of modelling and control in engineering and physiology

    Get PDF
    Mathematical and computer-based models provide the foundation of most methods of engineering design. They are recognised as being especially important in the development of integrated dynamic systems, such as “control-configured” aircraft or in complex robotics applications. These models usually involve combinations of linear or nonlinear ordinary differential equations or difference equations, partial differential equations and algebraic equations. In some cases models may be based on differential algebraic equations. Dynamic models are also important in many other fields of research, including physiology where the highly integrated nature of biological control systems is starting to be more fully understood. Although many models may be developed using physical, chemical, or biological principles in the initial stages, the use of experimentation is important for checking the significance of underlying assumptions or simplifications and also for estimating appropriate sets of parameters. This experimental approach to modelling is also of central importance in establishing the suitability, or otherwise, of a given model for an intended application – the so-called “model validation” problem. System identification, which is the broad term used to describe the processes of experimental modelling, is generally considered to be a mature field and classical methods of identification involve linear discrete-time models within a stochastic framework. The aspects of the research described in this thesis that relate to applications of identification, parameter estimation and optimisation techniques for model development and model validation mainly involve nonlinear continuous time models Experimentally-based models of this kind have been used very successfully in the course of the research described in this thesis very in two areas of physiological research and in a number of different engineering applications. In terms of optimisation problems, the design, experimental tuning and performance evaluation of nonlinear control systems has much in common with the use of optimisation techniques within the model development process and it is therefore helpful to consider these two areas together. The work described in the thesis is strongly applications oriented. Many similarities have been found in applying modelling and control techniques to problems arising in fields that appear very different. For example, the areas of neurophysiology, respiratory gas exchange processes, electro-optic sensor systems, helicopter flight-control, hydro-electric power generation and surface ship or underwater vehicles appear to have little in common. However, closer examination shows that they have many similarities in terms of the types of problem that are presented, both in modelling and in system design. In addition to nonlinear behaviour; most models of these systems involve significant uncertainties or require important simplifications if the model is to be used in a real-time application such as automatic control. One recurring theme, that is important both in the modelling work described and for control applications, is the additional insight that can be gained through the dual use of time-domain and frequency-domain information. One example of this is the importance of coherence information in establishing the existence of linear or nonlinear relationships between variables and this has proved to be valuable in the experimental investigation of neuromuscular systems and in the identification of helicopter models from flight test data. Frequency-domain techniques have also proved useful for the reduction of high-order multi-input multi-output models. Another important theme that has appeared both within the modelling applications and in research on nonlinear control system design methods, relates to the problems of optimisation in cases where the associated response surface has many local optima. Finding the global optimum in practical applications presents major difficulties and much emphasis has been placed on evolutionary methods of optimisation (both genetic algorithms and genetic programming) in providing usable methods for optimisation in design and in complex nonlinear modelling applications that do not involve real-time problems. Another topic, considered both in the context of system modelling and control, is parameter sensitivity analysis and it has been found that insight gained from sensitivity information can be of value not only in the development of system models (e.g. through investigation of model robustness and the design of appropriate test inputs), but also in feedback system design and in controller tuning. A technique has been developed based on sensitivity analysis for the semi-automatic tuning of cascade and feedback controllers for multi-input multi-output feedback control systems. This tuning technique has been applied successfully to several problems. Inverse systems also receive significant attention in the thesis. These systems have provided a basis for theoretical research in the control systems field over the past two decades and some significant applications have been reported, despite the inherent difficulties in the mathematical methods needed for the nonlinear case. Inverse simulation methods, developed initially by others for use in handling-qualities studies for fixed-wing aircraft and helicopters, are shown in the thesis to provide some important potential benefits in control applications compared with classical methods of inversion. New developments in terms of methodology are presented in terms of a novel sensitivity based approach to inverse simulation that has advantages in terms of numerical accuracy and a new search-based optimisation technique based on the Nelder-Mead algorithm that can handle inverse simulation problems involving hard nonlinearities. Engineering applications of inverse simulation are presented, some of which involve helicopter flight control applications while others are concerned with feed-forward controllers for ship steering systems. The methods of search-based optimisation show some important advantages over conventional gradient-based methods, especially in cases where saturation and other nonlinearities are significant. The final discussion section takes the form of a critical evaluation of results obtained using the chosen methods of system identification, parameter estimation and optimisation for the modelling and control applications considered. Areas of success are highlighted and situations are identified where currently available techniques have important limitations. The benefits of an inter-disciplinary and applications-oriented approach to problems of modelling and control are also discussed and the value in terms of cross-fertilisation of ideas resulting from involvement in a wide range of applications is emphasised. Areas for further research are discussed

    Iterative learning control: algorithm development and experimental benchmarking

    No full text
    This thesis concerns the general area of experimental benchmarking of Iterative Learning Control (ILC) algorithms using two experimental facilities. ILC is an approach which is suitable for applications where the same task is executed repeatedly over the necessarily finite time duration, known as the trial length. The process is reset prior to the commencement of each execution. The basic idea of ILC is to use information from previously executed trials to update the control input to be applied during the next one. The first experimental facility is a non-minimum phase electro-mechanical system and the other is a gantry robot whose basic task is to pick and place objects on a moving conveyor under synchronization and in a fixed finite time duration that replicates many tasks encountered in the process industries. Novel contributions are made in both the development of new algorithms and, especially, in the analysis of experimental results both of a single algorithm alone and also in the comparison of the relative performance of different algorithms. In the case of non-minimum phase systems, a new algorithm, named Reference Shift ILC (RSILC) is developed that is of a two loop structure. One learning loop addresses the system lag and another tackles the possibility of a large initial plant input commonly encountered when using basic iterative learning control algorithms. After basic algorithm development and simulation studies, experimental results are given to conclude that performance improvement over previously reported algorithms is reasonable. The gantry robot has been previously used to experimentally benchmark a range of simple structure ILC algorithms, such as those based on the ILC versions of the classical proportional plus derivative error actuated controllers, and some state-space based optimal ILC algorithms. Here these results are extended by the first ever detailed experimental study of the performance of stochastic ILC algorithms together with some modifications necessary to their configuration in order to increase performance. The majority of the currently reported ILC algorithms mainly focus on reducing the trial-to-trial error but it is known that this may come at the cost of poor or unacceptable performance along the trial dynamics. Control theory for discrete linear repetitive processes is used to design ILC control laws that enable the control of both trial-to-trial error convergence and along the trial dynamics. These algorithms can be computed using Linear Matrix Inequalities (LMIs) and again the results of experimental implementation on the gantry robot are given. These results are the first ever in this key area and represent a benchmark against which alternatives can be compared. In the concluding chapter, a critical overview of the results presented is given together with areas for both short and medium term further researc

    Neural networks in control engineering

    Get PDF
    The purpose of this thesis is to investigate the viability of integrating neural networks into control structures. These networks are an attempt to create artificial intelligent systems with the ability to learn and remember. They mathematically model the biological structure of the brain and consist of a large number of simple interconnected processing units emulating brain cells. Due to the highly parallel and consequently computationally expensive nature of these networks, intensive research in this field has only become feasible due to the availability of powerful personal computers in recent years. Consequently, attempts at exploiting the attractive learning and nonlinear optimization characteristics of neural networks have been made in most fields of science and engineering, including process control. The control structures suggested in the literature for the inclusion of neural networks in control applications can be divided into four major classes. The first class includes approaches in which the network forms part of an adaptive mechanism which modulates the structure or parameters of the controller. In the second class the network forms part of the control loop and replaces the conventional control block, thus leading to a pure neural network control law. The third class consists of topologies in which neural networks are used to produce models of the system which are then utilized in the control structure, whilst the fourth category includes suggestions which are specific to the problem or system structure and not suitable for a generic neural network-based-approach to control problems. Although several of these approaches show promising results, only model based structures are evaluated in this thesis. This is due to the fact that many of the topologies in other classes require system estimation to produce the desired network output during training, whereas the training data for network models is obtained directly by sampling the system input(s) and output(s). Furthermore, many suggested structures lack the mathematical motivation to consider them for a general structure, whilst the neural network model topologies form natural extensions of their linear model based origins. Since it is impractical and often impossible to collect sufficient training data prior to implementing the neural network based control structure, the network models have to be suited to on-line training during operation. This limits the choice of network topologies for models to those that can be trained on a sample by sample basis (pattern learning) and furthermore are capable of learning even when the variation in training data is relatively slow as is the case for most controlled dynamic systems. A study of feedforward topologies (one of the main classes of networks) shows that the multilayer perceptron network with its backpropagation training is well suited to model nonlinear mappings but fails to learn and generalize when subjected to slow varying training data. This is due to the global input interpretation of this structure, in which any input affects all hidden nodes such that no effective partitioning of the input space can be achieved. This problem is overcome in a less flexible feedforward structure, known as regular Gaussian network. In this network, the response of each hidden node is limited to a -sphere around its center and these centers are fixed in a uniform distribution over the entire input space. Each input to such a network is therefore interpreted locally and only effects nodes with their centers in close proximity. A deficiency common to all feedforward networks, when considered as models for dynamic systems, is their inability to conserve previous outputs and states for future predictions. Since this absence of dynamic capability requires the user to identify the order of the system prior to training and is therefore not entirely self-learning, more advanced network topologies are investigated. The most versatile of these structures, known as a fully recurrent network, re-uses the previous state of each of its nodes for subsequent outputs. However, despite its superior modelling capability, the tests performed using the Williams and Zipser training algorithm show that such structures often fail to converge and require excessive computing power and time, when increased in size. Despite its rigid structure and lack of dynamic capability, the regular Gaussian network produces the most reliable and robust models and was therefore selected for the evaluations in this study. To overcome the network initialization problem, found when using a pure neural network model, a combination structure· _in which the network operates in parallel with a mathematical model is suggested. This approach allows the controller to be implemented without any prior network training and initially relies purely on the mathematical model, much like conventional approaches. The network portion is then trained during on-line operation in order to improve the model. Once trained, the enhanced model can be used to improve the system response, since model exactness plays an important role in the control action achievable with model based structures. The applicability of control structures based on neural network models is evaluated by comparing the performance of two network approaches to that of a linear structure, using a simulation of a nonlinear tank system. The first network controller is developed from the internal model control (IMC) structure, which includes a forward and inverse model of the system to be controlled. Both models can be replaced by a combination of mathematical and neural topologies, the network portion of which is trained on-line to compensate for the discrepancies between the linear model _ and nonlinear system. Since the network has no dynamic ·capacity, .former system outputs are used as inputs to the forward and inverse model. Due to this direct feedback, the trained structure can be tuned to perform within limits not achievable using a conventional linear system. As mentioned previously the IMC structure uses both forward and inverse models. Since the control law requires that these models are exact inverses, an iterative inversion algorithm has to be used to improve the values produced by the inverse combination model. Due to deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible. Whilst such unstable elements can be removed from mathematical models, the inverse network is trained directly from the forward model and can not be compensated. These problems could be overcome by a control structure for which only a forward model is required. The neural predictive controller (NPC) presents such a topology. Based on the optimal control philosophy, this structure uses a model to predict several future outputs. The errors between these and the desired output are then collected to form the cost function, which may also include other factors such as the magnitude of the change in input. The input value that optimally fulfils all the objectives used to formulate the cost function, can then be found by locating its minimum. Since the model in this structure includes a neural network, the optimization can not be formulated in a closed mathematical form and has to be performed using a numerical method. For the NPC topology, as for the neural network IMC structure, former system outputs are fed back to the model and again the trained network approach produces results not achievable with a linear model. Due to the single network approach, the NPC topology furthermore overcomes the limitations described for the neural network IMC structure and can be extended to include multivariable systems. This study shows that the nonlinear modelling capability of neural networks can be exploited to produce learning control structures with improved responses for nonlinear systems. Many of the difficulties described are due to the computational burden of these networks and associated algorithms. These are likely to become less significant due to the rapid development in computer technology and advances in neural network hardware. Although neural network based control structures are unlikely to replace the well understood linear topologies, which are adequate for the majority of applications, they might present a practical alternative where (due to nonlinearity or modelling errors) the conventional controller can not achieve the required control action

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques

    NASA Aircraft Controls Research, 1983

    Get PDF
    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs

    Model Predictive Control for Temperature Dependent Systems

    Get PDF
    Manipulating and monitoring the variables of temperature dependent systems can be a very complex task for most industrial facilities since they require either the close attention of experienced engineers or highly expensive control programs. These systems are often poorly operated, which increases the cost of production and affects the overall performance of the process. This paper aims at proposing a solution to this problem using adaptable Model Predictive Control (MPC) algorithms for temperature dependent systems and computational methods to optimize their performance, while maintaining a stable temperature within the process. This research investigates and evaluates MPC and compares its performance to manual procedures for controlling temperature dependent systems. The method being investigated approximates future output process values like chemical concentrations in order to determine accurate set point changes to input variables that keep them at their desired targets. In addition, the algorithms in this program match predetermined temperature patterns that indicate if the input variables of the system are correctly balanced for operating at the desired production rate. Balance is achieved by using PID closed-loop control procedures on the output variables, as well as data storage algorithms to help reduce the error of future set point computation

    Adaptive control of large space structures using recursive lattice filters

    Get PDF
    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance
    corecore