26 research outputs found

    Modern Applications of Electrostatics and Dielectrics

    Get PDF
    Electrostatics and dielectric materials have important applications in modern society. As such, they require improved characteristics. More and more equipment needs to operate at high frequency, high voltage, high temperature, and other harsh conditions. This book presents an overview of modern applications of electrostatics and dielectrics as well as research progress in the field

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    TableHop: an actuated fabric display using transparent electrodes

    Get PDF
    We present TableHop, a tabletop display that provides controlled self-actuated deformation and vibro-tactile feedback to an elastic fabric surface while retaining the ability for high-resolution visual projection. The TableHop surface is made of a highly stretchable pure spandex fabric that is electrostatically actuated using electrodes mounted on its underside. We use transparent indium tin oxide electrodes and high-voltage modulation to create controlled surface deformations. This setup actuates pixels and creates deformations in the fabric up to ±\pm 5mm. Since the electrodes are transparent, the fabric surface can function as a diffuser for rear-projected visual images, and avoid occlusion by users. Users can touch and interact with the fabric to create expressive interactions as with any fabric based shape-changing interface. By using frequency modulation in the high-voltage circuit, we can also create localised tactile sensations on the user's finger-tip when touching the surface. We provide detailed simulation results of the shape of the surface deformation and the frequency of the haptic vibrations. These results can be used to build prototypes of different sizes and form-factors. We finally create a working prototype of TableHop that has 30×\times40 cm surface area and uses a grid of 3×\times3 transparent electrodes. Our prototype uses a maximum of 2.2 mW and can create tactile vibrations of up to 20 HzHz. TableHop can be scaled to large interactive surfaces and integrated with other objects and devices. TableHop will improve user interaction experience on 2.5D deformable displays

    Printgets: an Open-Source Toolbox for Designing Vibrotactile Widgets with Industrial-Grade Printed Actuators and Sensors

    Get PDF
    International audienceNew technologies for printing sensors and actuators combine the flexibility of interface layouts of touchscreens with localized vibrotactile feedback, but their fabrication still requires industrial-grade facilities. Until these technologies become easily replicable, interaction designers need material for ideation. We propose an open-source hardware and software toolbox providing maker-grade tools for iterative design of vibrotactile widgets with industrial-grade printed sensors and actuators. Our hardware toolbox provides a mechanical structure to clamp and stretch printed sheets, and electronic boards to drive sensors and actuators. Our software toolbox expands the design space of haptic interaction techniques by reusing the wide palette of available audio processing algorithms to generate real-time vibrotactile signals. We validate our toolbox with the implementation of three exemplar interface elements with tactile feedback: buttons, sliders, touchpads

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptic feedback in freehand gesture interaction

    Get PDF
    In this thesis work, haptic feedback in gesture interaction was studied. More precisely, focus was on vibrotactile feedback and freehand gestural input methods. Vibrotactile feedback methods have been studied extensively in the fields of touch-based interaction, remote control and mid-air gestural input, and mostly positive effects on user performance have been found. An experiment was conducted in order to investigate if vibrotactile feedback has an impact on user performance in a simple data entry task. In the study, two gestural input methods were compared and the effects of visual and vibrotactile feedback added to each method were examined. Statistically significant differences in task performance between input methods were found. Results also showed that less keystrokes per character were required with visual feedback. No other significant differences were found between the types of feedback. However, preference for vibrotactile feedback was observed. The findings indicate that the careful design of an input method primarily has an impact on user performance and the feedback method can enhance this performance in diverse ways
    corecore