16 research outputs found

    Design and Development of a Lightweight Ankle Exoskeleton for Human Walking Augmentation

    Get PDF
    RESUMÉ La plupart des exosquelettes motorisés de la cheville ont une masse distale considérable, ce qui limite leur capacité à réduire l’énergie dépensée par l’utilisateur durant la marche. L’objectif de notre travail est de développer un exosquelette de chevilles avec le minimum de masse distale ajoutée comparé aux exosquelettes motorisés de chevilles existants. Aussi, l’exosquelette doit fournir au moins 50 Nm de support au couple de flexion plantaire. L’exosquelette développé dans le cadre de ce mémoire utilise deux câbles Bowden pour transmettre la force mécanique de l’unité d’actionnement attachée à la taille aux deux tiges en fibre de Carbonne attachées à la botte de l’utilisateur. Quand les deux tiges sont tirées, ils génèrent un couple qui supporte le mouvement de flexion plantaire à la fin de la phase d’appui du cycle de marche. Une pièce conçue sur mesure et imprimé en plastique par prototypage rapide a été attachée au tibia pour ajuster la direction des câbles. Une étude d’optimisation a été effectuée pour minimiser la masse des tiges limitant ainsi la masse distale de l’exosquelette (attaché au tibia et pied) à seulement 348 g. Le résultat principal obtenu à partir des tests de marche est la réduction de l’activité des muscles soléaire et gastrocnémien du sujet par une moyenne de 37% et 44% respectivement lors de la marche avec l’exosquelette comparée à la marche normale. Cette réduction s’est produite quand l’exosquelette a fourni une puissance mécanique de 19 ± 2 W avec un actionnement qui a commencé à 38% du cycle de marche. Ce résultat démontre le potentiel de notre exosquelette à réduire le cout métabolique de marche et souligne l’importance de réduire la masse distale d’un exosquelette de marche.----------ABSTRACT Most of powered ankle exoskeletons add considerable distal mass to the user which limits their capacity to reduce the metabolic energy of walking. The objective of the work presented in this master thesis is to develop an ankle exoskeleton with a minimum added distal mass compared to existing autonomous powered ankle exoskeletons, while providing at least 50 Nm of assistive plantar flexion torque. The exoskeleton developed in this master thesis uses Bowden cables to transmit the mechanical force from the actuation unit attached to the waist to the carbon fiber struts fixed on the boot. As the struts are pulled, they create an assistive ankle plantar flexion torque. A 3D-printed brace was attached to the shin to adjust the direction of the cables. A design optimization study was performed to minimize the mass of the struts, thereby limiting the total added distal mass, attached to the shin and foot, to only 348 g. The main result obtained from walking tests was the reduction of the soleus and gastrocnemius muscles activity by an average of 37% and 44% respectively when walking with the exoskeleton compared to normal walking. This reduction occurred when the exoskeleton delivered a mechanical power of 19 ± 2 W with an actuation onset fixed at 38% of the gait cycle. This result shows the potential of the proposed exoskeleton to reduce the metabolic cost of walking and emphasizes the importance of minimizing the distal mass of ankle exoskeletons

    Design, Modelling, and Control of a Reconfigurable Rotary Series Elastic Actuator with Nonlinear Stiffness for Assistive Robots

    Full text link
    In assistive robots, compliant actuator is a key component in establishing safe and satisfactory physical human-robot interaction (pHRI). The performance of compliant actuators largely depends on the stiffness of the elastic element. Generally, low stiffness is desirable to achieve low impedance, high fidelity of force control and safe pHRI, while high stiffness is required to ensure sufficient force bandwidth and output force. These requirements, however, are contradictory and often vary according to different tasks and conditions. In order to address the contradiction of stiffness selection and improve adaptability to different applications, we develop a reconfigurable rotary series elastic actuator with nonlinear stiffness (RRSEAns) for assistive robots. In this paper, an accurate model of the reconfigurable rotary series elastic element (RSEE) is presented and the adjusting principles are investigated, followed by detailed analysis and experimental validation. The RRSEAns can provide a wide range of stiffness from 0.095 Nm/deg to 2.33 Nm/deg, and different stiffness profiles can be yielded with respect to different configuration of the reconfigurable RSEE. The overall performance of the RRSEAns is verified by experiments on frequency response, torque control and pHRI, which is adequate for most applications in assistive robots. Specifically, the root-mean-square (RMS) error of the interaction torque results as low as 0.07 Nm in transparent/human-in-charge mode, demonstrating the advantages of the RRSEAns in pHRI

    Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking

    Get PDF
    Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking
    corecore