276 research outputs found

    Current trends in product lifecycle management

    Get PDF
    Efficient and effective Product Lifecycle Management, as an evolution and enhancement of Product Data Management, is of strategic importance for virtually any company. Hence, it is crucial for companies to analyze and evaluate recent trends in information technology (IT) and their implications on Product Lifecycle Management. In this paper, the results of an interdisciplinary study conducted by Siemens AG, a major international technologies firm, and two universities are presented. The study identifies four current trends in IT and then evaluates their potential implications on Product Lifecycle Management. Finally, the IT trends are ranked according to their short and medium term effects on Product Lifecycle Management.<br /

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    Improving efficiency, scalability and efficacy of adaptive computation offloading in pervasive computing environments

    Get PDF
    As computing becomes more mobile and pervasive, there is a growing demand for increasingly rich, and therefore more computationally heavy, applications to run in mobile spaces. However, there exists a disparity between mobile platforms and the desktop environments upon which computationally heavy applications have traditionally run, which is likely to persist as both domains evolve at a competing pace. Consequently, an active research area is Adaptive Computation Offloading or cyber foraging that dynamically distributes application functionality to available peer devices according to resource availability and application behaviour. Integral to any offloading strategy is an adaptive decision making algorithm that computes the optimal placement of application components to remote devices based on changing environmental context. As this decision is typically computed by constrained devices and may occur frequently in dynamic environments, such algorithms should be both resource efficient and yield efficacious adaptation results. However, existing adaptive offloading approaches incur a number of overheads, which limit their applicability in mobile and pervasive spaces. This thesis is concerned with improving upon these limitations by specifically focusing on the efficiency, scalability and efficacy aspects of two major sub processes of adaptation: 1) Adaptive Candidate Device Selection and 2) Adaptive Object Topology Computation. To this end, three novel approaches are proposed. Firstly, a distributed approach to candidate device selection, which reduces the need to communicate collaboration metrics, and allows for the partial distribution of adaptation decision-making, is proposed. The approach is shown to reduce network consumption by over 90% and power consumption by as much as 96%, while maintaining linear memory complexity in contrast to the quadratic complexity of an existing approach. Hence, the approach presents a more efficient and scalable alternative for candidate device selection in mobile and pervasive environments. Secondly, with regards to the efficacy of adaptive object topology computation, a new type of adaptation granularity that combines the efficacy of fine-grained adaptation with the efficiency of coarse level approaches is proposed. The approach is shown to improve the efficacy of adaptation decisions by reducing network overheads by a minimum of 17% to as much 99%, while maintaining comparable decision making efficiency to coarse level adaptation. Thirdly, with regards to efficiency and scalability of object topology computation, a novel distributed approach to computing adaptation decisions is proposed, in which each device maintains a distributed local application sub-graph, consisting only of components in its own memory space. The approach is shown to reduce network cost by 100%, collaboration-wide memory cost by between 37% and 50%, battery usage by between 63% and 93%, and adaptation time by between 19% and 98%. Lastly, since improving the utility of adaptation in mobile and pervasive environments requires the simultaneous improvement of its sub processes, an adaptation engine, which consolidates the individual approaches presented above, is proposed. The consolidated adaptation engine is shown to improve the overall efficiency, scalability and efficacy of adaptation under a varying range of environmental conditions, which simulate dynamic and heterogeneous mobile environments

    Topology optimization for additive manufacturing

    Get PDF
    Topology optimization provides design engineers the opportunity to create light and complex structural parts. Additive manufacturing produces parts easier than traditional manu-facturing. Due to the above mentioned flexibility, parts that are designed for AM have the same structural load as the old parts but with reduced mass. This study utilizes topology optimization techniques, aiming to reduce the mass of the existing parts. Further weight loss is achieved by implementing lattice structure. The core of this thesis is to examine the workflow to include topology optimization in the process of design for AM. This was achieved by minimizing the mass of two parts of an electric scooter, neck and platform. The study produced new geometry for the existing parts. Cost analysis showed that the optimized design was cheaper to manufacture using the same AM method than the initial one. Within the context of the present work we came across the pros and cons of topology optimization and FEA through the Inspire software and proved that load conditions may directly affect the final result and product

    Engineering methods and tools for cyber–physical automation systems

    Get PDF
    Much has been published about potential benefits of the adoption of cyber–physical systems (CPSs) in manufacturing industry. However, less has been said about how such automation systems might be effectively configured and supported through their lifecycles and how application modeling, visualization, and reuse of such systems might be best achieved. It is vitally important to be able to incorporate support for engineering best practice while at the same time exploiting the potential that CPS has to offer in an automation systems setting. This paper considers the industrial context for the engineering of CPS. It reviews engineering approaches that have been proposed or adopted to date including Industry 4.0 and provides examples of engineering methods and tools that are currently available. The paper then focuses on the CPS engineering toolset being developed by the Automation Systems Group (ASG) in the Warwick Manufacturing Group (WMG), University of Warwick, Coventry, U.K. and explains via an industrial case study how such a component-based engineering toolset can support an integrated approach to the virtual and physical engineering of automation systems through their lifecycle via a method that enables multiple vendors' equipment to be effectively integrated and provides support for the specification, validation, and use of such systems across the supply chain, e.g., between end users and system integrators

    Document-Driven Design for Distributed CAD Services in Service-Oriented Architecture

    Get PDF
    Current computer-aided design (CAD) systems only support interactive geometry generation, which is not ideal for distributed engineering services in enterprise-to-enterprise collaboration with a generic thin-client service-oriented architecture. This paper proposes a new feature-based modeling mechanism—document-driven design—to enable batch mode geometry construction for distributed CAD systems. A semantic feature model is developed to represent informative and communicative design intent. Feature semantics is explicitly captured as a trinary relation, which provides good extensibility and prevents semantics loss. Data interoperability between domains is enhanced by schema mapping and multiresolution semantics. This mechanism aims to enable asynchronous communication in distributed CAD environments with ease of design alternative evaluation and reuse, reduced human errors, and improved system throughput and utilization

    Platforms for handling and development of audiovisual data

    Get PDF
    Estágio realizado na MOG Solutions e orientado por Vítor TeixeiraTese de mestrado integrado. Engenharia Informátca e Computação. Faculdade de Engenharia. Universidade do Porto. 200
    corecore