52 research outputs found

    Understanding the Mechanism of Abrasive-Based Finishing Processes Using Mathematical Modeling and Numerical Simulation

    Get PDF
    Recent advances in technology and refinement of available computational resources paved the way for the extensive use of computers to model and simulate complex real-world problems difficult to solve analytically. The appeal of simulations lies in the ability to predict the significance of a change to the system under study. The simulated results can be of great benefit in predicting various behaviors, such as the wind pattern in a particular region, the ability of a material to withstand a dynamic load, or even the behavior of a workpiece under a particular type of machining. This paper deals with the mathematical modeling and simulation techniques used in abrasive-based machining processes such as abrasive flow machining (AFM), magnetic-based finishing processes, i.e., magnetic abrasive finishing (MAF) process, magnetorheological finishing (MRF) process, and ball-end type magnetorheological finishing process (BEMRF). The paper also aims to highlight the advances and obstacles associated with these techniques and their applications in flow machining. This study contributes the better understanding by examining the available modeling and simulation techniques such as Molecular Dynamic Simulation (MDS), Computational Fluid Dynamics (CFD), Finite Element Method (FEM), Discrete Element Method (DEM), Multivariable Regression Analysis (MVRA), Artificial Neural Network (ANN), Response Surface Analysis (RSA), Stochastic Modeling and Simulation by Data Dependent System (DDS). Among these methods, CFD and FEM can be performed with the available commercial software, while DEM and MDS performed using the computer programming-based platform, i.e., "LAMMPS Molecular Dynamics Simulator," or C, C++, or Python programming, and these methods seem more promising techniques for modeling and simulation of loose abrasive-based machining processes. The other four methods (MVRA, ANN, RSA, and DDS) are experimental and based on statistical approaches that can be used for mathematical modeling of loose abrasive-based machining processes. Additionally, it suggests areas for further investigation and offers a priceless bibliography of earlier studies on the modeling and simulation techniques for abrasive-based machining processes. Researchers studying mathematical modeling of various micro- and nanofinishing techniques for different applications may find this review article to be of great help

    Impulse-Based Manufacturing Technologies

    Get PDF
    In impulse-based manufacturing technologies, the energy required to form, join or cut components acts on the workpiece in a very short time and suddenly accelerates workpiece areas to very high velocities. The correspondingly high strain rates, together with inertia effects, affect the behavior of many materials, resulting in technological benefits such as improved formability, reduced localizing and springback, extended possibilities to produce high-quality multi material joints and burr-free cutting. This Special Issue of JMMP presents the current research findings, which focus on exploiting the full potential of these processes by providing a deeper understanding of the technology and the material behavior and detailed knowledge about the sophisticated process and equipment design. The range of processes that are considered covers electromagnetic forming, electrohydraulic forming, adiabatic cutting, forming by vaporizing foil actuators and other impulse-based manufacturing technologies. Papers show significant improvements in the aforementioned processes with regard to: Processes analysis; Measurement technique; Technology development; Materials and modelling; Tools and equipment; Industrial implementation

    Development of a manufacturing feature-based design system

    Get PDF
    Traditional CAD systems are based on the serial approach of the product development cycle: the design process is not integrated with other activities and thus it can not provide information for subsequent phases of product development. In order to eliminate this problem, many modern CAD systems allow the composition of designs from building blocks of higher level of abstraction called features. Although features used in current systems tend to be named after manufacturing processes, they do not, in reality, provide valuable manufacturing data. Apart from the obvious disadvantage that process engineers need to re-evaluate the design and capture the intent of the designer, this approach also prohibits early detection of possible manufacturing problems. This research attempts to bring the design and manufacturing phases together by implementing manufacturing features. A design is composed entirely in a bottom-up manner using manufacturable entities in the same way as they would be produced during the manufacturing phase. Each feature consists of parameterised geometry, manufacturing information (including machine tool, cutting tools, cutting conditions, fixtures, and relative cost information), design limitations, functionality rules, and design-for-manufacture rules. The designer selects features from a hierarchical feature library. Upon insertion of a feature, the system ensures that no functionality or manufacturing rules are violated. If a feature is modified, the system validates the feature by making sure that it remains consistent with its original functionality and design-for-manufacture rules are re-applied. The system also allows analysis of designs, from a manufacturing point of view, that were not composed using features. In order to reduce the complexity of the system, design functionality and design-for manufacture rules are organised into a hierarchical system and are pointed to the appropriate entries of the feature hierarchy. The system makes it possible to avoid costly designs by eliminating possible manufacturing problems early in the product development cycle. It also makes computer-aided process planning feasible. The system is developed as an extension of a commercially available CAD/CAM system (Pro/Engineer), and at its current stage only deals with machining features. However, using the same principles, it can be expanded to cover other kinds of manufacturing processes

    Analysis of prior strain history effect on mechanical properties and residual stresses in beams

    Get PDF
    The crack compliance method (eeM) has attracted a lot of interest as an inexpensive method for the determination of residual stresses in materials compared to the use of Xray and neutron diffraction methods. The vast majority of the work found for the application of the eeM in the literature concentrated on the determination of residual stresses in annealed beam specimens. There is very little evidence of the verification of the method in cases where the material might have experienced prior strain loading effect such as Bauschinger effect before the residual stress is induced. This thesis has applied the eeM for the determination of residual stresses in bemus that were under Bauschinger effect before the residual stress was induced. The thesis also briefly considers the application of the eeM for the study of cyclic loading effect on the relaxation of residual stresses in beams. In order to achieve the aims highlighted above, the thesis develops a new efficient solution for the simultaneous determination of tensile and compressive stress-strain behaviour in materials under Bauschinger effect. The determination of these properties helps with the verification of the results of the eeM by using another relatively simple and inexpensive method based on the superposition of loading and unloading stresses. A new simple support method for beams subjected to electro-discharge machining (EDM) is also introduced. The new cutting arrangement allows free deformation of beams during cutting and allows the plane of cutting to be maintained without deviation. The experimental testing and verification procedure considers several factors such as different materials, heat treatment conditions, various levels of pre-straining and different fatigue load amplitudes. Several aspects of the crack compliance method are verified. The results obtained in all cases are generally very encouraging

    Implementation of CAD-based and 3D non-linear finite element methodologies on modelling of machining processes

    Get PDF
    La eliminación de material es uno de los procesos de conformación más importantes de la industria. Además, mediante el mecanizado se pueden producir una amplia variedad de productos que van desde una herramienta simple hasta una pieza de avión. Estos hechos significativos junto con la constante evolución por la ingeniería se convirtieron en la base de la presente tesis.El objetivo principal durante la investigación y el desarrollo en el área de mecanizado basado en FEM, se centra en:aumentar la precisión de los modelos FE desarrollados,reducir el tiempo de preparación yminimizar el trabajo experimental requerido.Para lograr los estándares altos y garantizar la confiabilidad de los procesos de corte, se deben determinar nuevos métodos de análisis teórico. Además, se requieren nuevos modelos de simulación para cubrir el desarrollo continuo de herramientas de corte. A la luz de estas consideraciones, se llevó a cabo un estudio extenso de la literatura como primer paso hacia una comprensión más profunda de trabajos previosen el campo. A continuación, el procesamiento de los hallazgos reveló ciertos temas que requerían mayor investigación o mejora. Dichos temas incluyen:La mejora de la precisión durante el modelado de FE.La investigación del efecto de las condiciones críticas de mecanizado sobre varios parámetros como las fuerzas de corte desarrolladas, la morfología de la viruta, así como la tensión y la distribución de la temperatura. Y el establecimiento de modelos de predicciones eficientes y fáciles de usar.Una vez finalizada la revisión bibliográfica, la investigación se dividió en cuatro etapas. La primera etapa está asociada con la mejora de la precisión en el modelado de FE. La segunda trata sobre el modelado FE de operaciones de taladrado y torneado en tres dimensiones, asistido con técnicas basadas en CAD. La tercera etapa está relacionada con la investigación del mecanizado de materiales industriales en condiciones críticas de corte. Finalmente, la última presenta el desarrollo de modelos de predicción con la ayuda de metodologías estadísticas.1) La mayoría de los investigadores utilizan en sus estudios modelos de herramientas de corte proporcionados por los fabricantes o los diseñan ellos mismos. Sin embargo, en el primer caso, es posible que los resultados de la simulación producidos sean de baja precisión, debido al hecho de que los modelos descargados de la web de un fabricante suelen estar simplificados y, a menudo, pierden características geométricas críticas. En este último caso, el investigador puede verse obligado a dedicar horas a tareas de diseño repetitivas que pueden resultar frustrantes, especialmente cuando se producen errores de diseño. Para evitar confusiones y centrarse en tareas más creativas, se diseñó y desarrolló una aplicación para el diseño automatizado de herramientas de corte con la ayuda de Application Programming Interface (API) delsistema CAD SolidWorks™. En esta etapa se emplearon los recursos de programación de SolidWorks ™, combinados con la estrategia de diseño paramétrico para que se pudiera lograr la concepción de la aplicación.2) Con la finalización de la aplicación, se prepararon varios modelos 3D FE y se generaron las herramientas de corte equivalentes con fines de prueba. Las pruebas de simulación se completaron con éxito y los resultados adquiridos revelaron una mayor correlación con los resultados experimentales correspondientes. Posteriormente, se establecieron modelos de FE similares para taladrado y torneado, de acuerdo con loshallazgos y recomendaciones de trabajos ya publicados, mediante el uso de un software FEA de última generación, llamado DEFORM ™ -3D. Las propiedades de los materiales, la evolución de los daños, la aproximación de la fricción, así como el flujo térmico, se establecieron con respecto al trabajo experimental realizado durante esta investigación, además de los hallazgos publicados por expertos en la materia.Además, se hizo un esfuerzo por simplificar los problemas de mecanizado, empleando varias estrategias bien establecidas, como la configuración asistida por CAD de la interfaz herramienta-pieza de trabajo y la localización del refinamiento de la malla.3) La tercera etapa de la tesis está directamente vinculada a la anterior. Los resultados de la simulación adquiridos se procesaron con la ayuda de entornos informáticos como Excel™ y MATLAB®, de modo que los resultados se pueden convertir en conjuntos de datos utilizables. Posteriormente, los datos procesados se visualizaron y compararon directamente con hallazgos equivalentes que están disponibles en la literatura. Esta comparación mostró que los modelos de FE desarrollados estaban de acuerdo con los encontrados en studios ya publicados. Además, se llevaron a cabo una serie de pruebas experimentales para validar aún más la precisión de los modelos de FE desarrollados. Para realizar con precisión el trabajo experimental, se utilizó un centro de mecanizado CNC junto con el equipo de medición (un dinamómetro). Al mismo tiempo, se realizó una investigación sobre los efectos de la velocidad de corte, el avance, la profundidad de corte y la geometría de la herramienta sobre las fuerzas de corte desarrolladas. En concreto, se estudiaron las fuerzas de empuje generadas durante el taladrado, así como los componentes de mecanizado (fuerzas radiales, tangenciales y de avance) inducidas durante el torneado.Doctoral Thesis: Implementation of CAD-based and 3D non-linear finite element methodologies on modelling of machining processes.Además, se estudiaron tanto la evolución de la viruta como la morfología con respecto a la operación aplicada, el material, la herramienta y las condiciones de corte.4) Finalmente, los resultados simulados verificados se utilizaron para el desarrollo de modelos matemáticos que pueden predecir las fuerzas de corte generadas dentro de límites específicos. Los modelos que fueron representados por funciones, pueden generar resultados de alta precisión al instante y sin la necesidad de ningún software especializado. El modelado se realizó utilizando la Metodología de Superficie de Respuesta (RSM) ampliamente utilizada, que además mejoró la visualización de la investigación concluida durante la tercera etapa. Para fortalecer aún más la validez de los modelos estadísticos, se utilizó el Análisis de Varianza (ANOVA). Los resultados del análisis revelaron que los modelos desarrollados son robustos y se pueden utilizar de forma segura con fines de predicción.El documento titulado “CAD-based automated design of FEA-ready cutting tools” presenta el desarrollo de una aplicación de diseñador con la implementación de la API de SolidWorks ™ implementada con VBA. El propósito de la aplicación desarrollada es generar automáticamente modelos CAD de herramientas de corte que se pueden utilizar con el software FEA. Al finalizar la aplicación, se han realizado con éxito una serie de pruebas de simulación para verificar la funcionalidad de los modelos generados. El resultado de simulación de las fuerzas de mecanizado al obtenido de forma experimental, superando el 90% en la mayoría de los casos. El documento titulado "FEM based mathematical modelling of thrust force during drilling of Al7075-T6" presenta el desarrollo de un modelo de predicción para las fuerzas generadas durante la perforación de Al7075-T6, con la ayuda de RSM y la implementación de 3D FEA. Se realizó una serie completa de 27 simulaciones 3D bajo diferentes condiciones de corte (velocidad y avance) además de los tres diámetros deherramienta diferentes que se utilizaron. Los resultados simulados se validaron mediante experimentos y la correlación entre los resultados simulados y experimentales superó el 95% en la mayoría de los casos. Después de analizar a fondo el modelo para determinar su precisión (5,9%) y fidelidad de ajuste, se concluye que el modelo desarrollado puede predecir con seguridad las fuerzas de empuje bajo ciertos límites que se discuten en esta investigación. Además, se introdujo la morfología de las virutas producidas durante la perforación de Al7075-T6.En el trabajo “3D FE modelling of machining forces during AISI 4140 hard turning” se presentó el desarrollo de un modelo 3D FE, así como un modelo de predicción de la principal fuerza de mecanizado inducida durante torneado duro de AISI-4140. Se realizaron una serie de 27 simulaciones 3D bajo diferentes condiciones de velocidad de corte y avance, además de las tres diferentes profundidades de corte. Los resultados numéricos obtenidos fueron validados mediante valores experimentales que se encuentran disponibles en la literatura y se observó que están en alta concordancia superando el 90% en la mayoría de las situaciones. La precisión (8.8%) y la bondad de ajuste del modelo estadístico, determinan que los modelos desarrollados (FE y estadístico) pueden predecir con fiabilidad las fuerzas de mecanizado resultantes cuando se aplican dentro del alcance de este estudio.Finalmente, en la publicación "Influence of the nose radius on the machining forces induced during AISI-4140 hard turning: A CAD-based and 3D FEM approach" un modelo 3D FE para el torneado de AISI-4140 como un modelo de predicción de la fuerza de mecanizado resultante, basado en métodos estadísticos. Se utilizó unconjunto de resultados experimentales que están disponibles en la bibliografía para verificar el modelo FE y, en consecuencia, se preparó un diseño completo de experimentos de acuerdo con tres niveles de velocidad de corte, velocidad de avance y radio de la punta de la herramienta. Se realizó una validación adicional del modelo estadístico para garantizar que el modelo pueda predecir con seguridad la fuerza de corte resultante dentro del rango de condiciones encontradas en el presente estudio. Finalmente, se investigó y presentó gráficamente la influencia del radio de la punta en las fuerzas de corte producidas.<br /

    Characterisation and Testing of Multifunctional Surfaces

    Get PDF

    Proceedings of the 4th International Conference on Innovations in Automation and Mechatronics Engineering (ICIAME2018)

    Get PDF
    The Mechatronics Department (Accredited by National Board of Accreditation, New Delhi, India) of the G H Patel College of Engineering and Technology, Gujarat, India arranged the 4th International Conference on Innovations in Automation and Mechatronics Engineering 2018, (ICIAME 2018) on 2-3 February 2018. The papers presented during the conference were based on Automation, Optimization, Computer Aided Design and Manufacturing, Nanotechnology, Solar Energy etc and are featured in this book
    corecore