32 research outputs found

    Standardising the clinical assessment of coronal knee laxity

    Get PDF
    Clinical laxity tests are used for assessing knee ligament injuries and for soft tissue balancing in total knee arthroplasty. This study reports the development and validation of a quantitative technique of assessing collateral knee laxity through accurate measurement of potential variables during routine clinical examination. The hypothesis was that standardisation of a clinical stress test would result in a repeatable range of laxity measurements.Non- invasive infrared tracking technology with kinematic registration of joint centres gave real-time measurement of both coronal and sagittal mechanical tibiofemoral alignment. Knee flexion, moment arm and magnitude of the applied force were all measured and standardised. Three clinicians then performed six knee laxity examinations on a single volunteer using a target moment of 18Nm. Standardised laxity measurements had small standard deviations (within 1.1°) for each clinician and similar mean values between clinicians, with the valgus laxity assessment (mean of 3°) being slightly more consistent than varus (means of 4° or 5°).The manual technique of coronal knee laxity assessment was successfully quantified and standardised, leading to a narrow range of measurements (within the accuracy of the measurement system). Minimising the subjective variables of clinical examination could improve current knowledge of soft tissue knee behaviour

    Development of the Telemetrical Intraoperative Soft Tissue Tension Monitoring System in Total Knee Replacement with MEMS and ASIC Technologies

    Get PDF
    The alignment of the femoral and tibial components of the Total Knee Arthoplasty (TKA) is one of the most important factors to implant survivorship. Hence, numerous ligament balancing techniques and devices have been developed in order to accurately balance the knee intra-operatively. Spacer block, tensioner and tram adapter are instruments that allow surgeons to qualitatively balance the flexion and extension gaps during TKA. However, even with these instruments, the surgical procedure still relies on the skill and experience of the surgeon. The objective of this thesis is to develop a computerized surgical instrument that can acquire intra-operative data telemetrically for surgeons and engineers. Microcantilever is chosen to be used as the strain sensing elements. Even though many high end off-the-shelf data acquisition components and integrated circuit (IC) chips exist on the market, yet multiple components are required to process the entire array of microcantilevers and achieve the desired functions. Due to the size limitation of the off-chip components, an Application Specific Integrated Circuit (ASIC) chip is designed and fabricated. Using a spacer block as a base, sensors, a data acquisition system as well as the transmitter and antenna are embedded into it. The electronics are sealed with medical grade epoxy

    Exploring the Performance of an Artificial Intelligence-Based Load Sensor for Total Knee Replacements.

    Get PDF
    Using tibial sensors in total knee replacements (TKRs) can enhance patient outcomes and reduce early revision surgeries, benefitting hospitals, the National Health Services (NHS), stakeholders, biomedical companies, surgeons, and patients. Having a sensor that is accurate, precise (over the whole surface), and includes a wide range of loads is important to the success of joint force tracking. This research aims to investigate the accuracy of a novel intraoperative load sensor for use in TKRs. This research used a self-developed load sensor and artificial intelligence (AI). The sensor is compatible with Zimmer's Persona Knee System and adaptable to other knee systems. Accuracy and precision were assessed, comparing medial/lateral compartments inside/outside the sensing area and below/within the training load range. Five points were tested on both sides (medial and lateral), inside and outside of the sensing region, and with a range of loads. The average accuracy of the sensor was 83.41% and 84.63% for the load and location predictions, respectively. The highest accuracy, 99.20%, was recorded from inside the sensing area within the training load values, suggesting that expanding the training load range could enhance overall accuracy. The main outcomes were that (1) the load and location predictions were similar in accuracy and precision (p > 0.05) in both compartments, (2) the accuracy and precision of both predictions inside versus outside of the triangular sensing area were comparable (p > 0.05), and (3) there was a significant difference in the accuracy of load and location predictions (p < 0.05) when the load applied was below the training loading range. The intraoperative load sensor demonstrated good accuracy and precision over the whole surface and over a wide range of load values. Minor improvements to the software could greatly improve the results of the sensor. Having a reliable and robust sensor could greatly improve advancements in all joint surgeries

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors
    corecore