1,908 research outputs found

    Facilitating Cooperative Truck Platooning for Energy Savings: Path Planning, Platoon Formation and Benefit Redistribution

    Full text link
    Enabled by the connected and automated vehicle (CAV) technology, cooperative truck platooning that offers promising energy savings is likely to be implemented soon. However, as the trucking industry operates in a highly granular manner so that the trucks usually vary in their operation schedules, vehicle types and configurations, it is inevitable that 1) the spontaneous platooning over a spatial network is rare, 2) the total fuel savings vary from platoon to platoon, and 3) the benefit achieved within a platoon differs from position to position, e.g., the lead vehicle always achieves the least fuel-saving. Consequently, trucks from different owners may not have the opportunities to platoon with others if no path coordination is performed. Even if they happen to do so, they may tend to change positions in the formed platoons to achieve greater benefits, yielding behaviorally unstable platoons with less energy savings and more disruptions to traffic flows. This thesis proposes a hierarchical modeling framework to explicate the necessitated strategies that facilitate cooperative truck platooning. An empirical study is first conducted to scrutinize the energy-saving potentials of the U.S. national freight network. By comparing the performance under scheduled platooning and ad-hoc platooning, the author shows that the platooning opportunities can be greatly improved by careful path planning, thereby yielding substantial energy savings. For trucks assembled on the same path and can to platoon together, the second part of the thesis investigates the optimal platoon formation that maximizes total platooning utility and benefits redistribution mechanisms that address the behavioral instability issue. Both centralized and decentralized approaches are proposed. In particular, the decentralized approach employs a dynamic process where individual trucks or formed platoons are assumed to act as rational agents. The agents decide whether to form a larger, better platoon considering their own utilities under the pre-defined benefit reallocation mechanisms. Depending on whether the trucks are single-brand or multi-brand, whether there is a complete information setting or incomplete information setting, three mechanisms, auction, bilateral trade model, and one-sided matching are proposed. The centralized approach yields a near-optimal solution for the whole system and is more computationally efficient than conventional algorithms. The decentralized approach is stable, more flexible, and computational efficient while maintaining acceptable degrees of optimality. The mechanisms proposed can apply to not only under the truck platooning scenario but also other forms of shared mobility.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163047/1/xtsun_1.pd

    Wildlife community occurrence, activity patterns, and interspecific interactions in response to energy development

    Get PDF
    2018 Summer.Includes bibliographical references.To view the abstract, please see the full text of the document

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice

    Full text link
    As one of the most fundamental concepts in transportation science, Wardrop equilibrium (WE) has always had a relatively weak behavioral underpinning. To strengthen this foundation, one must reckon with bounded rationality in human decision-making processes, such as the lack of accurate information, limited computing power, and sub-optimal choices. This retreat from behavioral perfectionism in the literature, however, was typically accompanied by a conceptual modification of WE. Here we show that giving up perfect rationality need not force a departure from WE. On the contrary, WE can be reached with global stability in a routing game played by boundedly rational travelers. We achieve this result by developing a day-to-day (DTD) dynamical model that mimics how travelers gradually adjust their route valuations, hence choice probabilities, based on past experiences. Our model, called cumulative logit (CULO), resembles the classical DTD models but makes a crucial change: whereas the classical models assume routes are valued based on the cost averaged over historical data, ours values the routes based on the cost accumulated. To describe route choice behaviors, the CULO model only uses two parameters, one accounting for the rate at which the future route cost is discounted in the valuation relative to the past ones and the other describing the sensitivity of route choice probabilities to valuation differences. We prove that the CULO model always converges to WE, regardless of the initial point, as long as the behavioral parameters satisfy certain mild conditions. Our theory thus upholds WE's role as a benchmark in transportation systems analysis. It also resolves the theoretical challenge posed by Harsanyi's instability problem by explaining why equally good routes at WE are selected with different probabilities

    Optimizing city-scale traffic through modeling observations of vehicle movements

    Full text link
    The capability of traffic-information systems to sense the movement of millions of users and offer trip plans through mobile phones has enabled a new way of optimizing city traffic dynamics, turning transportation big data into insights and actions in a closed-loop and evaluating this approach in the real world. Existing research has applied dynamic Bayesian networks and deep neural networks to make traffic predictions from floating car data, utilized dynamic programming and simulation approaches to identify how people normally travel with dynamic traffic assignment for policy research, and introduced Markov decision processes and reinforcement learning to optimally control traffic signals. However, none of these works utilized floating car data to suggest departure times and route choices in order to optimize city traffic dynamics. In this paper, we present a study showing that floating car data can lead to lower average trip time, higher on-time arrival ratio, and higher Charypar-Nagel score compared with how people normally travel. The study is based on optimizing a partially observable discrete-time decision process and is evaluated in one synthesized scenario, one partly synthesized scenario, and three real-world scenarios. This study points to the potential of a "living lab" approach where we learn, predict, and optimize behaviors in the real world

    Assisted specification of discrete choice models

    Get PDF
    Determining appropriate utility specifications for discrete choice models is time-consuming and prone to errors. With the availability of larger and larger datasets, as the number of possible specifications exponentially grows with the number of variables under consideration, the analysts need to spend increasing amounts of time on searching for good models through trial-and-error, while expert knowledge is required to ensure these models are sound. This paper proposes an algorithm that aims at assisting modelers in their search. Our approach translates the task into a multi-objective combinatorial optimization problem and makes use of a variant of the variable neighborhood search algorithm to generate sets of promising model specifications. We apply the algorithm both to semi-synthetic data and to real mode choice datasets as a proof of concept. The results demonstrate its ability to provide relevant insights in reasonable amounts of time so as to effectively assist the modeler in developing interpretable and powerful models

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Cultures of Compliance

    Get PDF
    There has been a cultural turn in discussion and debates about the promise of corporate compliance efforts. These efforts are occurring quickly, without great confidence in their efficacy. Thus the interest in culture. This article explores what a culture of compliance means and why it is so hard to achieve. The dark side that enables non-compliance in organizations is powerful and often hidden from view, working via scripts that rationalize or normalize, denigrations of regulation, and celebrations of beliefs and attitudes that bring with them compliance dangers. The article addresses how both culture and compliance should be judged by those wishing for better corporate behavior
    • …
    corecore