12,145 research outputs found

    Linkage between knowledge management practices towards library user’s satisfaction at Malaysian University Libraries

    Get PDF
    Academic library services have begun to apply various knowledge management (KM) practices in the provision of library services. KM has been developed to enhance the use of organizational knowledge through practices and organizational learning. KM practices include the creation, capture and/or acquisition of knowledge, its retention and organization, its dissemination and re-use, and general responsiveness to the new knowledge. The focus of this research is the assessment of KM practices, particularly creation, acquisition, capture, sharing, recording and preservation, and their effects on Library User’s Satisfaction (LUS) in Malaysian university libraries. The objective of this research is the development of a model to enhance KM processes (i.e. Creation, acquisition, capturing, sharing, recording, and preserving) and to improve library users’ satisfaction. A quantitative approach in research methodology is employed (e.g. Questionnaire) for the purpose of generating new knowledge and understanding of library concerns. The findings of this research show that the overall KM practice at six Malaysian university libraries is at a high level. The findings from the structural model indicated that two KM processes, namely knowledge creation and acquisition, are not supported in terms of KM practices at Malaysian university libraries. Other KM processes, namely capturing, sharing, recording, and preserving are fully supported towards KM practices in the library. Hence, the major contribution of this research is a model, namely KM Practice-Library User’s Satisfaction (KMP-LUS) highlighting six KM processes based on strong Structural Equation Modeling (SEM) fit indices

    An integrated approach to indoor contaminant modelling

    Get PDF
    Air pollutants are those chemicals that are not generally present in the atmosphere because of natural causes but are disseminated into the air by human activity. In most parts of Europe, outdoor pollutants are principally the products of combustion from space heating, power generation, chemical industry waste, or from motor vehicle traffic (McGinlay 1997). Indoor air environments contain a myriad of inorganic and organic gases and vapors typically in trace (parts-per-billion) quantities. The chemical composition of air varies widely between particular locations as well as between measurements taken at different times for the same location. The nature of these variations is such that it is difficult to definitively characterize a typical indoor air environment with respect to specific contaminants present and concentration levels. A large number of air pollutants have known or suspected harmful effects that can be manifested on plant or animal life and/or the environment. Pollutants may not only prove a problem in the immediate vicinity of their emission, but they can travel long distances and react with other species present in the atmosphere to produce secondary pollutants (Weschler 2004)

    Combining different validation techniques for continuous software improvement - Implications in the development of TRNSYS 16

    Get PDF
    Validation using published, high quality test suites can serve to identify different problems in simulation software: modeling and coding errors, missing features, frequent sources of user confusion. This paper discusses the application of different published validation procedures during the development of a new TRNSYS version: BESTEST/ASHRAE 140 (Building envelope), HVAC BESTEST (mechanical systems) and IEA ECBCS Annex 21 / SHC Task 12 empirical validation (performance of a test cell with a very simple mechanical system). It is shown that each validation suite has allowed to identify different types of problems. Those validation tools were also used to diagnose and fix some of the identified problems, and to assess the influence of code modifications. The paper also discusses some limitations of the selected validation tools

    Contrasting the capabilities of building energy performance simulation programs

    Get PDF
    For the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced and are in use throughout the building energy community. This paper is an overview of a report, which provides up-to-date comparison of the features and capabilities of twenty major building energy simulation programs. The comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope and daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability, results reporting; validation; and user interface, links to other programs, and availability
    • …
    corecore