741 research outputs found

    Investigations on electromagnetic noises and interactions in electronic architectures : a tutorial case on a mobile system

    Get PDF
    Electromagnetic interactions become critic in embedded and smart electronic structures. The increase of electronic performances confined in a finite volume or support for mobile applications defines new electromagnetic environment and compatibility configurations (EMC). With canonical demonstrators developed for tutorials and EMC experiences, this paper present basic principles and experimental techniques to investigate and control these severe interferences. Some issues are reviewed to present actual and future scientific challenges for EMC at electronic circuit level

    Wavelet-Based High-Order Adaptive Modeling of Lossy Interconnects

    Get PDF
    Abstract—This paper presents a numerical-modeling strategy for simulation of fast transients in lossy electrical interconnects. The proposed algorithm makes use of wavelet representations of voltages and currents along the structure, with the aim of reducing the computational complexity of standard time-domain solvers. A special weak procedure for the implementation of possibly dynamic and nonlinear boundary conditions allows to preserve stability as well as a high approximation order, thus leading to very accurate schemes. On the other hand, the wavelet expansion allows the computation of the solution by using few significant coefficients which are automatically determined at each time step. A dynamically refinable mesh is then used to perform a sparse time-stepping. Several numerical results illustrate the high efficiency of the proposed algorithm, which has been tuned and optimized for best performance in fast digital applications typically found on modern PCB structures. Index Terms—Finite difference methods, time-domain analysis, transmission lines, wavelet transforms. I

    Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    Get PDF
    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface

    A New Method Exploiting Partial Image Expansion to Include Substrate and Ground in Dipole-Based Near-Field Models

    Get PDF
    This work introduces a novel method to include the passive structure of a printed circuit board into an infinitesimal dipole model that is reconstructed from near-field measurement data. Specifically, the proposed approach enables the construction of equivalent models that include dipole sources, substrate, and perfect electric conductor plane. The electromagnetic near-fields of the infinitesimal dipoles in this configuration are estimated through an adaptation of the partial image expansion technique. The proposed method has the capability to provide accurate results for a wide variety of configurations. Furthermore, it can be easily incorporated into existing dipole array optimization workflows with minimal added computational complexity

    I/O port macromodelling

    Get PDF
    3D electromagnetic modelling and simulation of various Printed Circuit Board (PCB) components is an important technique for characterizing the Signal Integrity (SI) and Electromagnetic Compatibility (EMC) issues present in a PCB. However, due to limited computational resource and the complexity of the integrated circuits, it is currently not possible to fully model a complete PCB system with 3D electromagnetic solvers. An effort has been made to fully model the PCB with all its components and their S-parameters has been derived so as to integrate these S-parameters in 1D, 2D static or quasi-static field solver or circuit solver tool. The novelty of this thesis is the development and verification of active circuit such as Input and Output buffers and passive channel components such as interconnects, via and connectors and deriving their S-parameters in order to model and characterize the complete PCB using 3D full field solver based on Transmission Line Matrix modelling (TLM) method. An integration of Input/Output (I/O) port in the 3D full field modelling method allows for modelling of the complete PCB system without being computationally expensive. This thesis presents a method for integration of Input/Output port in the 3D time domain modelling environment. Several software tools are available in the market which can characterize these PCBs in the frequency as well as the time domain using 1D, 2D techniques or using circuit solver such as spice. The work in this thesis looks at extending these 1D and 2D techniques for 3D Electromagnetic solvers in the time domain using the TLM technique for PCB analysis. The modelling technique presented in this thesis is based on in-house developed 3D TLM method along with a developed behavioral Integrated Circuit (IC) – macromodel. The method has been applied to a wide variety of PCB topologies along with a range of IC packages to fully validate the approach. The method has also been applied to show the switching effect arising out of the crosstalk in a logic device apart from modelling various discontinuities of PCB interconnects in the form of S11 and S21 parameters. The proposed novel TLM based technique has been selected based on simplification of its approach, electrical equivalence (rather than complex mathematical functions of Maxwell's electromagnetic theory), time domain analysis for transients in a PCB with an increased accuracy over other available methods in the literature. On the experimental side two, four and six layered PCBs with various interconnect discontinuities such as straight line, right angle, fan-out and via and IC packages such as SOT-23 (DBV), SC-70 (DCK) and SOT-553 (DRL) has been designed and manufactured. The modelling results have been verified with the experimental results of these PCBs and other commercial software such as HSPICE, CST design studio available in the market. While characterizing the SI issues, these modelling results can also help in analyzing conducted and radiated EMC/EMI problems to meet various EMC regulations such as CE, FCC around the world

    Technical Design Report for the PANDA Micro Vertex Detector

    Get PDF
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined

    Anomaly Detection with Decision Trees for AI Assisted Evaluation of Signal Integrity on PCB Transmission Lines

    Get PDF
    Printed circuit board (PCB) design can be supported to a high degree by adding AI modules to the design system. Predictions from these modules can be made available to the designer in order to speed up circuit design and make it more efficient. Problems regarding signal integrity (SI) can be detected in time by providing hints on component connection or routing. However, the optimization and ML methods used in this context are usually very sophisticated (e.g., Bayesian optimization). Therefore, the design parameters provided by the AI modules must be accepted without further insights (for the experienced as well as the inexperienced designer). In this paper, a decision tree for anomaly detection and SI verification is presented, which by nature of this algorithm provides insights to the decisions made to obtain the proposed design parameters. Using a point-to-point (P2P) network as an example, the prediction accuracy of the AI model is investigated. It is shown that assessing SI effects with a decision tree provides a simple approach to obtain the suggested design. Furthermore, the predictions of the decision tree can be verified against the design rules.</p

    A Specification For A Next Generation Cad Toolkit For Electronics Product Design

    Get PDF
    Electronic engineering product design is a complex process which has enjoyed an increasing provision of computer based tools since the early 1980's. Over this period computer aided design tool development has progressed at such a pace that new features and functions have tended to be market driven. As such CAD tools have not been developed through the recommended practise of defining a functional specification prior to any software code generation. This thesis defines a new functional specification for next generation CAD tools to support the electronics product design process. It is synthesized from a review of the use of computers in the electronics product design process, from a case study of Best Practices prevalent in a wide range of electronics companies and from a new model of the design process. The model and the best practices have given rise to a new concept for company engineering documentation, the Product Book which provides a logical framework for constraining CAD tools and their users (designers) as means of controlling costs in the design process. This specification differs from current perceptions of computer functionality in the CAD tool industry by addressing human needs together with company needs of computer supported design, rather than just providing more technological support for the designer in isolation.Racal Reda
    • …
    corecore