43 research outputs found

    Delay tolerant network for Navy scenarios: quality-based approach

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesThe navy operations involve several participants that work between them with common objectives and usually under challenged communication conditions. There are natural constrains that are imposed by the operation environment, e.g. hilly terrains. There are also artificial constrains that are created by enemy elements which force conditions to affect the navy operation (or other military forces), e.g. intentional jamming. The military often uses proprietary devices to communicate between them. Despite of the effectiveness of these devices, they are expensive and usually offer a limited range of services. However, the recent technological advances allow the proliferation of several mobile devices with wireless communication capabilities and with the value to easily insert new features, but these devices are still not prepared to military networks in terms of communication. Thus, this dissertation proposes to use Delay Tolerant Networks (DTNs) with a new routing protocol Quality-PRoPHET (Q-PRoPHET) able to measure the quality of the wireless links and route the information using the connections with best quality, where the probability of transmission is higher. The Q-PRoPHET uses a quality function to evaluate the quality of the connections and a transitive property to route through multiple hops. This algorithm was implemented in IBR-DTN and it was evaluated in three scenarios that emulate three scenarios observed during the navy tactical operations. Two of these scenarios were tested inside a building and the last one was tested in an external environment using real mobility of the nodes. The obtained results show that Q-PRoPHET has better performance than PRoPHET in terms of delivery ratio, endto-end delay and packets transmission, which are critical parameters for the communication in navy operations.As operações da marinha envolvem vários intervenientes que trabalham entre si com objetivos comuns e frequentemente sob condições de comunicação desafiadoras. Existem constrangimentos naturais que são impostos pelo ambiente da operação, por exemplo, geografia acidentada do terreno. Existem também constrangimentos artificiais que são criados por elementos hostis que forçam condições de modo a prejudicar as operações da marinha (ou outras equipas militares), por exemplo, criação de interferência intencional. Os militares geralmente usam equipamentos de comunicação proprietários para comunicar entre si. Apesar da eficácia destes equipamentos, eles são caros e normalmente oferecem uma gama de serviços limitada. Contudo, os recentes avanços tecnológicos permitiram a proliferação de muitos dispositivos portáteis com capacidade de comunicação sem fios e com o valor de acrescentar novas funcionalidades de formas muito simples, mas estes dispositivos ainda não estão adaptados para as redes militares em termos de comunicação. Esta dissertação propõe usar Redes Tolerantes a Atrasos (DTNs) com um novo protocolo de encaminhamento QualityPRoPHET (Q-PRoPHET) capaz de medir a qualidade das ligações sem-fios e encaminhar a informação pelas ligações de melhor qualidade, onde a probabilidade de sucesso da transmissão é maior. O Q-PRoPHET usa uma função de qualidade para avaliar a qualidade das ligações e uma propriedade transitiva para encaminhamento a múltiplos saltos. Este algoritmo foi implementado no IBR-DTN e foi avaliado em três cenários que emulam três cenários observados durante operações táticas da Marinha. Dois destes cenários foram testados dentro de um edifício e o último foi testado em ambiente exterior, recorrendo a mobilidade real dos nós. Os resultados obtidos mostram que o Q-PRoPHET tem melhor desempenho que o PRoPHET em termos de taxa de entrega, tempo de entrega e transmissão de pacotes, que são parâmetros críticos para as comunicações das operações da marinha

    Socially-aware congestion control in ad-hoc networks: Current status and the way forward

    Get PDF
    Ad-hoc social networks (ASNETs) represent a special type of traditional ad-hoc network in whicha user’s social properties (such as the social connections and communications metadata as wellas application data) are leveraged for offering enhanced services in a distributed infrastructurelessenvironments. However, the wireless medium, due to limited bandwidth, can easily suffer from theproblem of congestion when social metadata and application data are exchanged among nodes—a problem that is compounded by the fact that some nodes may act selfishly and not share itsresources. While a number of congestion control schemes have been proposed for the traditional ad-hoc networks, there has been limited focus on incorporating social awareness into congestion controlschemes. We revisit the existing traditional ad-hoc congestion control and data distribution protocolsand motivate the need for embedding social awareness into these protocols to improve performance.We report that although some work is available in opportunistic network that uses socially-awaretechniques to control the congestion issue, this area is largely unexplored and warrants more researchattention. In this regards, we highlight the current research progress and identify multiple futuredirections of research

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore