3,954 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Case Study - IPv6 based building automation solution integration into an IPv4 Network Service Provider infrastructure

    Get PDF
    The case study presents a case study describing an Internet Protocol (IP) version 6 (v6) introduction to an IPv4 Internet Service Provider (ISP) network infrastructure. The case study driver is an ISP willing to introduce a new “killer” service related to Internet of Things (IoT) style building automation. The provider and cooperation of third party companies specialized in building automation will provide the service. The ISP has to deliver the network access layer and to accommodate the building automation solution traffic throughout its network infrastructure. The third party companies are system integrators and building automation solution vendors. IPv6 is suitable for such solutions due to the following reasons. The operator can’t accommodate large number of IPv4 embedded devices in its current network due to the lack of address space and the fact that many of those will need clear 2 way IP communication channel. The Authors propose a strategy for IPv6 introduction into operator infrastructure based on the current network architecture present service portfolio and several transition mechanisms. The strategy has been applied in laboratory with setup close enough to the current operator’s network. The criterion for a successful experiment is full two-way IPv6 application layer connectivity between the IPv6 server and the IPv6 Internet of Things (IoT) cloud

    Smart Home Systems

    Get PDF

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    TV-Centric technologies to provide remote areas with two-way satellite broadband access

    Get PDF
    October 1-2, 2007, Rome, Italy TV-Centric Technologies To Provide Remote Areas With Two-Way Satellite Broadband Acces

    Development of an Embedded Smart Home System

    Get PDF
    Smart home systems are expected to become key research area for ubiquitous and embedded system computing in coming years. In this thesis, a new scheme in smart home systems technology using embedded system for providing intelligent control of home appliances is proposed. An embedded system act as protocol glue that incorporates wired and wireless option such as Short Message Service (SMS) router with wireless local area network (WI-FI) for intelligent automation and higher speed of home appliances connectivity. The system is implemented in 2 tier models. First-tier model consist of incorporated design of SMS Router and Wireless Access Point. Wireless local area network (WI-FI) is selected as mechanism due to its transmission range within 100m which suits the smart home requirement for automation and control, justifies the Personal Area Network (PAN) for mobile device connectivity. Second tier model consist of remote application server systems, which cater a conceptual model between embedded hardware and software integration of appliances in smart home. This interface model will be between in house networks and external communication environment, whereas embedded system acts as storage media and server for information interchange between systems especially with mobile devices within a smart home. Embedded system sits at the core of the home network, acts as residential gateway and enables bi-directional communication and data transfer channel among networked appliances in the home and across the Internet. On the other hand, client-side application provides a user-friendly Graphic User Interface (GUI) to enhance the usability of the system. The proposed embedded system has been implemented and verified that the system can be a core device for smart home environment functionality
    corecore