10,927 research outputs found

    Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics

    Get PDF
    Integrated photoniccircuits, increasingly based on silicon (-nitride), are at the core of the next generation of low-cost, energy efficient optical devices ranging from on-chip interconnects to biosensors. One of the main bottlenecks in developing such components is that of implementing sufficient functionalities on the often passive backbone, such as light emission and amplification. A possible route is that of hybridization where a new material is combined with the existing framework to provide a desired functionality. Here, we present a detailed design flow for the hybridization of silicon nitride-based integrated photonic circuits with so-called colloidal quantum dots (QDs). QDs are nanometer sized pieces of semiconductor crystals obtained in a colloidal dispersion which are able to absorb, emit, and amplify light in a wide spectral region. Moreover, theycombine cost-effective solution based deposition methods, ambient stability, and low fabrication cost. Starting from the linear and nonlinear material properties obtained on the starting colloidal dispersions, we can predict and evaluate thin film and device performance, which we demonstrate through characterization of the first on-chip QD-based laser

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Optical Nanofibers: a new platform for quantum optics

    Full text link
    The development of optical nanofibers (ONF) and the study and control of their optical properties when coupling atoms to their electromagnetic modes has opened new possibilities for their use in quantum optics and quantum information science. These ONFs offer tight optical mode confinement (less than the wavelength of light) and diffraction-free propagation. The small cross section of the transverse field allows probing of linear and non-linear spectroscopic features of atoms with exquisitely low power. The cooperativity -- the figure of merit in many quantum optics and quantum information systems -- tends to be large even for a single atom in the mode of an ONF, as it is proportional to the ratio of the atomic cross section to the electromagnetic mode cross section. ONFs offer a natural bus for information and for inter-atomic coupling through the tightly-confined modes, which opens the possibility of one-dimensional many-body physics and interesting quantum interconnection applications. The presence of the ONF modifies the vacuum field, affecting the spontaneous emission rates of atoms in its vicinity. The high gradients in the radial intensity naturally provide the potential for trapping atoms around the ONF, allowing the creation of one-dimensional arrays of atoms. The same radial gradient in the transverse direction of the field is responsible for the existence of a large longitudinal component that introduces the possibility of spin-orbit coupling of the light and the atom, enabling the exploration of chiral quantum optics.Comment: 65 pages, to appear in Advances in Atomic, Molecular and Optical Physic

    Overview of potential methods for corrosion monitoring

    Get PDF

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.Peer ReviewedPostprint (published version
    • …
    corecore