3,480 research outputs found

    Unsupervised Parkinson’s Disease Assessment

    Get PDF
    Parkinson’s Disease (PD) is a progressive neurological disease that affects 6.2 million people worldwide. The most popular clinical method to measure PD tremor severity is a standardized test called the Unified Parkinson’s Disease Rating Scale (UPDRS), which is performed subjectively by a medical professional. Due to infrequent checkups and human error introduced into the process, treatment is not optimally adjusted for PD patients. According to a recent review there are two devices recommended to objectively quantify PD symptom severity. Both devices record a patient’s tremors using inertial measurement units (IMUs). One is not currently available for over the counter purchases, as they are currently undergoing clinical trials. It has also been used in studies to evaluate to UPDRS scoring in home environments using an Android application to drive the tests. The other is an accessible product used by researchers to design home monitoring systems for PD tremors at home. Unfortunately, this product includes only the sensor and requires technical expertise and resources to set up the system. In this paper, we propose a low-cost and energy-efficient hybrid system that monitors a patient’s daily actions to quantify hand and finger tremors based on relevant UPDRS tests using IMUs and surface Electromyography (sEMG). This device can operate in a home or hospital environment and reduces the cost of evaluating UPDRS scores from both patient and the clinician’s perspectives. The system consists of a wearable device that collects data and wirelessly communicates with a local server that performs data analysis. The system does not require any choreographed actions so that there is no need for the user to follow any unwieldy peripheral. In order to avoid frequent battery replacement, we employ a very low-power wireless technology and optimize the software for energy efficiency. Each collected signal is filtered for motion classification, where the system determines what analysis methods best fit with each period of signals. The corresponding UPDRS algorithms are then used to analyze the signals and give a score to the patient. We explore six different machine learning algorithms to classify a patient’s actions into appropriate UPDRS tests. To verify the platform’s usability, we conducted several tests. We measured the accuracy of our main sensors by comparing them with a medically approved industry device. The our device and the industry device show similarities in measurements with errors acceptable for the large difference in cost. We tested the lifetime of the device to be 15.16 hours minimum assuming the device is constantly on. Our filters work reliably, demonstrating a high level of similarity to the expected data. Finally, the device is run through and end-to-end sequence, where we demonstrate that the platform can collect data and produce a score estimate for the medical professionals

    Kvantitativna analiza pokreta u rehabilitaciji neuroloških poremećaja korišćenjem vizuelnih i nosivih senzora.

    Get PDF
    Neuroloska oboljenja, kao sto su Parkinsonova bolest i slog, dovode do ozbiljnih motornih poremecaja, smanjuju kvalitet zivota pacijenata i mogu da uzrokuju smrt. Rana dijagnoza i adekvatno lecenje su krucijalni faktori za drzanje bolesti pod kontrolom, kako bi se omogucio normalan svakodnevni zivot pacijenata. Lecenje neurolo skih bolesti obicno ukljucuje rehabilitacionu terapiju i terapiju lekovima, koje se prilagodavaju u skladu sa stanjem pacijenta tokom vremena. Tradicionalne tehnike evaluacije u dijagnozi i monitoringu neuroloskih bolesti oslanjaju se na klinicke evaluacione alate, tacnije specijalno dizajnirane klinicke testove i skale. Medutim, iako su korisne i najcesce koriscene, klinicke skale su sklone subjektivnim ocenama i nepreciznoj interpretaciji performanse pacijenta...Neurological disorders, such as Parkinson's disease (PD) and stroke, lead to serious motor disabilities, decrease the patients' quality of life and can cause the mortality. Early diagnosis and adequate disease treatment are thus crucial factors towards keeping the disease under control in order to enable the normal every-day life of patients. The treatment of neurological disorders usually includes the rehabilitation therapy and drug treatment, that are adapted based on the evaluation of the patient state over time. Conventional evaluation techniques for diagnosis and monitoring in neurological disorders rely on the clinical assessment tools i.e. specially designed clinical tests and scales. However, although benecial and commonly used, those scales are descriptive (qualitative), primarily intended to be carried out by a trained neurologist, and are prone to subjective rating and imprecise interpretation of patient's performance..

    Sensor-based artificial intelligence to support people with cognitive and physical disorders

    Get PDF
    A substantial portion of the world's population deals with disability. Many disabled people do not have equal access to healthcare, education, and employment opportunities, do not receive specific disability-related services, and experience exclusion from everyday life activities. One way to face these issues is through the use of healthcare technologies. Unfortunately, there is a large amount of diverse and heterogeneous disabilities, which require ad-hoc and personalized solutions. Moreover, the design and implementation of effective and efficient technologies is a complex and expensive process involving challenging issues, including usability and acceptability. The work presented in this thesis aims to improve the current state of technologies available to support people with disorders affecting the mind or the motor system by proposing the use of sensors coupled with signal processing methods and artificial intelligence algorithms. The first part of the thesis focused on mental state monitoring. We investigated the application of a low-cost portable electroencephalography sensor and supervised learning methods to evaluate a person's attention. Indeed, the analysis of attention has several purposes, including the diagnosis and rehabilitation of children with attention-deficit/hyperactivity disorder. A novel dataset was collected from volunteers during an image annotation task, and used for the experimental evaluation using different machine learning techniques. Then, in the second part of the thesis, we focused on addressing limitations related to motor disability. We introduced the use of graph neural networks to process high-density electromyography data for upper limbs amputees’ movement/grasping intention recognition for enabling the use of robotic prostheses. High-density electromyography sensors can simultaneously acquire electromyography signals from different parts of the muscle, providing a large amount of spatio-temporal information that needs to be properly exploited to improve recognition accuracy. The investigation of the approach was conducted using a recent real-world dataset consisting of electromyography signals collected from 20 volunteers while performing 65 different gestures. In the final part of the thesis, we developed a prototype of a versatile interactive system that can be useful to people with different types of disabilities. The system can maintain a food diary for frail people with nutrition problems, such as people with neurocognitive diseases or frail elderly people, which may have difficulties due to forgetfulness or physical issues. The novel architecture automatically recognizes the preparation of food at home, in a privacy-preserving and unobtrusive way, exploiting air quality data acquired from a commercial sensor, statistical features extraction, and a deep neural network. A robotic system prototype is used to simplify the interaction with the inhabitant. For this work, a large dataset of annotated sensor data acquired over a period of 8 months from different individuals in different homes was collected. Overall, the results achieved in the thesis are promising, and pave the way for several real-world implementations and future research directions

    Towards electrodeless EMG linear envelope signal recording for myo-activated prostheses control

    Get PDF
    After amputation, the residual muscles of the limb may function in a normal way, enabling the electromyogram (EMG) signals recorded from them to be used to drive a replacement limb. These replacement limbs are called myoelectric prosthesis. The prostheses that use EMG have always been the first choice for both clinicians and engineers. Unfortunately, due to the many drawbacks of EMG (e.g. skin preparation, electromagnetic interferences, high sample rate, etc.); researchers have aspired to find suitable alternatives. One proposes the dry-contact, low-cost sensor based on a force-sensitive resistor (FSR) as a valid alternative which instead of detecting electrical events, detects mechanical events of muscle. FSR sensor is placed on the skin through a hard, circular base to sense the muscle contraction and to acquire the signal. Similarly, to reduce the output drift (resistance) caused by FSR edges (creep) and to maintain the FSR sensitivity over a wide input force range, signal conditioning (Voltage output proportional to force) is implemented. This FSR signal acquired using FSR sensor can be used directly to replace the EMG linear envelope (an important control signal in prosthetics applications). To find the best FSR position(s) to replace a single EMG lead, the simultaneous recording of EMG and FSR output is performed. Three FSRs are placed directly over the EMG electrodes, in the middle of the targeted muscle and then the individual (FSR1, FSR2 and FSR3) and combination of FSR (e.g. FSR1+FSR2, FSR2-FSR3) is evaluated. The experiment is performed on a small sample of five volunteer subjects. The result shows a high correlation (up to 0.94) between FSR output and EMG linear envelope. Consequently, the usage of the best FSR sensor position shows the ability of electrode less FSR-LE to proportionally control the prosthesis (3-D claw). Furthermore, FSR can be used to develop a universal programmable muscle signal sensor that can be suitable to control the myo-activated prosthesis

    The "Federica" hand: a simple, very efficient prothesis

    Get PDF
    Hand prostheses partially restore hand appearance and functionalities. Not everyone can afford expensive prostheses and many low-cost prostheses have been proposed. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. Generally, active prostheses use multiple motors for fingers movement and are controlled by electromyographic (EMG) signals. The "Federica" hand is a single motor prosthesis, equipped with an adaptive grasp and controlled by a force-myographic signal. The "Federica" hand is 3D printed and has an anthropomorphic morphology with five fingers, each consisting of three phalanges. The movement generated by a single servomotor is transmitted to the fingers by inextensible tendons that form a closed chain; practically, no springs are used for passive hand opening. A differential mechanical system simultaneously distributes the motor force in predefined portions on each finger, regardless of their actual positions. Proportional control of hand closure is achieved by measuring the contraction of residual limb muscles by means of a force sensor, replacing the EMG. The electrical current of the servomotor is monitored to provide the user with a sensory feedback of the grip force, through a small vibration motor. A simple Arduino board was adopted as processing unit. The differential mechanism guarantees an efficient transfer of mechanical energy from the motor to the fingers and a secure grasp of any object, regardless of its shape and deformability. The force sensor, being extremely thin, can be easily embedded into the prosthesis socket and positioned on both muscles and tendons; it offers some advantages over the EMG as it does not require any electrical contact or signal processing to extract information about the muscle contraction intensity. The grip speed is high enough to allow the user to grab objects on the fly: from the muscle trigger until to the complete hand closure, "Federica" takes about half a second. The cost of the device is about 100 US$. Preliminary tests carried out on a patient with transcarpal amputation, showed high performances in controlling the prosthesis, after a very rapid training session. The "Federica" hand turned out to be a lightweight, low-cost and extremely efficient prosthesis. The project is intended to be open-source: all the information needed to produce the prosthesis (e.g. CAD files, circuit schematics, software) can be downloaded from a public repository. Thus, allowing everyone to use the "Federica" hand and customize or improve it

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application

    Fused mechanomyography and inertial measurement for human-robot interface

    Get PDF
    Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control through uniting a human operator as the supervisor with a machine as the task executor. Sensors, actuators, and onboard intelligence have not reached the point where robotic manipulators may function with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. These may include environments where direct human action is undesirable or infeasible, and situations where a robot must assist and/or interface with people. Contemporary literature has introduced concepts such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize hand gestures and/or track arm motions for assessment of operator intent and generation of robotic control signals. While these developments offer a wealth of future potential their utility has been largely restricted to laboratory demonstrations in controlled environments due to issues such as lack of portability and robustness and an inability to extract operator intent for both arm and hand motion. Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-based gesture recognition systems in particular have received significant attention in recent literature. As wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp intent as HMI input for manipulator control. However, such work has arguably reached a plateau since EMG suffers from interference from environmental factors which cause signal degradation over time, demands an electrical connection with the skin, and has not demonstrated the capacity to function out of controlled environments for long periods of time. This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm movements into control signals. Additionally, bands containing six mechanomyography sensors were used to observe muscular contractions in the forearm which are generated using specific hand motions. This combination of continuous and discrete control signals allows a large variety of smart devices to be controlled. Several methods of pattern recognition were implemented to provide accurate decoding of the mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis also established that arm pose also changes the measured signal. This thesis introduces a new method of fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are proposed. These improvements to the robustness of the system provide the first solution that is able to reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical environment. Application in robot teleoperation in both real-world and virtual environments were explored. With multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it requires a combination of continuous and discrete control signals. The field of prosthetics also represents a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic devices, however mechanomyography sensors are unaffected by such issues. There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems become more prevalent, and as the desire for a simple, universal interface increases. Such systems have the potential to impact significantly on the quality of life of prosthetic users and others.Open Acces
    corecore