433 research outputs found

    The development of artificial muscles using textile structures

    Get PDF
    The aim of this project was to investigate the use of textile structures as muscles to assist people with muscular deficiency or paralysis. Due to the average life expectancy continuing to increase, support for those needing assistance to move unaided is also increasing. The purpose of this project was to try to help a patient who would normally need assistance, to move their arm unaided. It could also help with rehabilitation of muscular injuries and increasing strength and reducing muscular fatigue of manual workers. The approach considered was to develop an extra corporal device for the upper limbs, providing the main required motions. Most devices currently available use motors and gearboxes to assist in limb movement. This study investigated a way of mimicking the contraction of biological skeletal muscles to create a motion that is as human as possible with a soft, flexible and lightweight construction. Electroactive polymers (EAPs) and pneumatic artificial muscles (PAMs) were investigated. It became clear that at present, the EAPs were unable to create the forces and speed of contraction required for this application. The use of pneumatics to create artificial muscles was developed upon. PAMs, like the McKibben muscle and the pleated pneumatic muscle mimic the natural contraction of skeletal muscle. These current PAMs were used as a basis to develop a new type of pneumatic artificial muscle in this project. A 90 mm ball-like structure was developed, produced from an air impermeable rubber coated cotton fabric. Joining three oval panels together created a 3-D spherical shape. Three of these structures were linked together, and when inflated, created an acceptable level of contraction and force. This method of producing artificial muscles created a soft, lightweight and flexible actuator with scope for different arrangements, sizes and positions of the muscle structure. The contraction process was mathematically modelled. This calculated the predicted rate and level of contraction of a 2-D muscle structure. These mathematical findings were able to be compared to the practical results, and produced similar contraction characteristics. The muscle structures were incorporated into a garment to form a type of muscle suit which could be worn to assist movement. This garment has an aluminium frame to protect the wearer's bones from stresses from the contracting muscles. This study has shown that the muscle suit developed can create movement for wearers that would normally need assistance, and also reduce muscle fatigue, which would be useful for manual workers. This is incorporated into a functional and wearable garment, which is easy to dress and more lightweight and aesthetically pleasing than current muscle suits.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons

    Get PDF
    This article presents the development of a power augmentation and rehabilitation exoskeleton based on a novel actuator. The proposed soft actuators are extensor bending pneumatic artificial muscles. This type of soft actuator is derived from extending McKibben artificial muscles by reinforcing one side to prevent extension. This research has experimentally assessed the performance of this new actuator and an output force mathematical model for it has been developed. This new mathematical model based on the geometrical parameters of the extensor bending pneumatic artificial muscle determines the output force as a function of the input pressure. This model is examined experimentally for different actuator sizes. After promising initial experimental results, further model enhancements were made to improve the model of the proposed actuator. To demonstrate the new bending actuators a power augmentation and rehabilitation soft glove has been developed. This soft hand exoskeleton is able to fit any adult hand size without the need for any mechanical system changes or calibration. EMG signals from the human hand have been monitored to prove the performance of this new design of soft exoskeleton. This power augmentation and rehabilitation wearable robot has been shown to reduce the amount of muscles effort needed to perform a number of simple grasps

    Soft Pneumatic Actuators for Rehabilitation

    Get PDF
    Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM) in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments, according to medical requirements. In particular devices useful for arms massage treatments are considered. Finally some applications are considered

    Wearable exoskeleton systems based-on pneumatic soft actuators and controlled by parallel processing

    Get PDF
    Human assistance innovation is essential in an increasingly aging society and one technology that may be applicable is exoskeletons. However, traditional rigid exoskeletons have many drawbacks. This research includes the design and implementation of upper-limb power assist and rehabilitation exoskeletons based on pneumatic soft actuators. A novel extensor-contractor pneumatic muscle has been designed and constructed. This new actuator has bidirectional action, allowing it to both extend and contract, as well as create force in both directions. A mathematical model has been developed for the new novel actuator which depicts the output force of the actuator. Another new design has been used to create a novel bending pneumatic muscle, based on an extending McKibben muscle and modelled mathematically according to its geometric parameters. This novel bending muscle design has been used to create two versions of power augmentation gloves. These exoskeletons are controlled by adaptive controllers using human intention. For finger rehabilitation a glove has been developed to bend the fingers (full bending) by using our novel bending muscles. Inspired by the zero position (straight fingers) problem for post-stroke patients, a new controllable stiffness bending actuator has been developed with a novel prototype. To control this new rehabilitation exoskeleton, online and offline controller systems have been designed for the hand exoskeleton and the results have been assessed experimentally. Another new design of variable stiffness actuator, which controls the bending segment, has been developed to create a new version of hand exoskeletons in order to achieve more rehabilitation movements in the same single glove. For Forearm rehabilitation, a rehabilitation exoskeleton has been developed for pronation and supination movements by using the novel extensor-contractor pneumatic muscle. For the Elbow rehabilitation an elbow rehabilitation exoskeleton was designed which relies on novel two-directional bending actuators with online and offline feedback controllers. Lastly for upper-limb joint is the wrist, we designed a novel all-directional bending actuator by using the moulding bladder to develop the wrist rehabilitation exoskeleton by a single all-directional bending muscle. Finally, a totally portable, power assistive and rehabilitative prototype has been developed using a parallel processing intelligent control chip

    RoboGlove-A Grasp Assist Device for Earth and Space

    Get PDF
    The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. Work is underway to integrate the RoboGlove system with a space suit glove to add strength or reduce fatigue during spacewalks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove in an assembly-line configuration and discusses work toward the space suit application

    Comparative study of actuation systems for portable upper limb exoskeletons.

    Get PDF
    During the last two decades, a large variety of upper limb exoskeletons have been developed. Out of these, majority are platform based systems which might be the reason for not being widely adopted for post-stroke rehabilitation. Despite the potential benefits of platform-based exoskeletons as being rugged and reliable, stroke patients prefer to have a portable and user-friendly device that they can take home. However, the types of actuator as well as the actuation mechanism used in the exoskeleton are the inhibiting factors why portable exoskeletons are mostly non-existent for patient use. This paper presents a quantitative analysis of the actuation systems available for developing portable upper arm exoskeletons with their specifications. Finally, it has been concluded from this research that there are not many stand-alone arm exoskeletons which can provide all forms of rehabilitation, therefore, a generic solution has been proposed as the rehabilitation strategy to get best out of the portable arm exoskeletons

    RoboGlove - A Robonaut Derived Multipurpose Assistive Device

    Get PDF
    The RoboGlove is an assistive device that can augment human strength, endurance or provide directed motion for use in rehabilitation. RoboGlove is a spinoff of the highly successful Robonaut 2 (R2) system developed as part of a partnership between General Motors and NASA. This extremely lightweight device employs an actuator system based on the R2 finger drive system to transfer part or the entire grasp load from human tendons to artificial ones contained in the glove. Steady state loads ranging from 15 to 20 lbs. and peaks approaching 50 lbs. are achievable. The technology holds great promise for use with space suit gloves to reduce fatigue during space walks. Tactile sensing, miniaturized electronics, and on-board processing provide sufficient flexibility for applications in many industries. The following describes the design, mechanical/electrical integration, and control features of the glove

    Soft Pneumatic Actuator Fascicles for High Force and Reliability

    Get PDF
    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. Additionally, other general problems remain open including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely the structured parallel arrangement of lower power actuators to form the basis of a larger, more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA-pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scales as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23 % increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50 %. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system
    • …
    corecore