246 research outputs found

    Development of a Gastric Cancer Diagnostic Support System with a Pattern Recognition Method Using a Hyperspectral Camera

    Get PDF
    Gastric cancer is a completely curable cancer when it can be detected at its early stage. Thus, because early detection of gastric cancer is important, cancer screening by gastroscopy is performed. Recently, the hyperspectral camera (HSC), which can observe gastric cancer at a variety of wavelengths, has received attention as a gastroscope. HSC permits the discerning of the slight color variations of gastric cancer, and we considered its applicability to a gastric cancer diagnostic support system. In this paper, after correcting reflectance to absorb the individual variations in the reflectance of the HSC, a gastric cancer diagnostic support system was designed using the corrected reflectance. In system design, the problems of selecting the optimum wavelength and optimizing the cutoff value of a classifier are solved as a pattern recognition problem by the use of training samples alone. Using the hold-out method with 104 cases of gastric cancer as samples, design and evaluation of the system were independently repeated 30 times. After analyzing the performance in 30 trials, the mean sensitivity was 72.2% and the mean specificity was 98.8%. The results showed that the proposed system was effective in supporting gastric cancer screening

    Tongue Tumor Detection in Medical Hyperspectral Images

    Get PDF
    A hyperspectral imaging system to measure and analyze the reflectance spectra of the human tongue with high spatial resolution is proposed for tongue tumor detection. To achieve fast and accurate performance for detecting tongue tumors, reflectance data were collected using spectral acousto-optic tunable filters and a spectral adapter, and sparse representation was used for the data analysis algorithm. Based on the tumor image database, a recognition rate of 96.5% was achieved. The experimental results show that hyperspectral imaging for tongue tumor diagnosis, together with the spectroscopic classification method provide a new approach for the noninvasive computer-aided diagnosis of tongue tumors

    Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging

    Get PDF
    There are approximately 1.8 million diagnoses of colorectal cancer, 1 million diagnoses of stomach cancer, and 0.6 million diagnoses of esophageal cancer each year globally. An automatic computer-assisted diagnostic (CAD) tool to rapidly detect colorectal and esophagogastric cancer tissue in optical images would be hugely valuable to a surgeon during an intervention. Based on a colon dataset with 12 patients and an esophagogastric dataset of 10 patients, several state-of-the-art machine learning methods have been trained to detect cancer tissue using hyperspectral imaging (HSI), including Support Vector Machines (SVM) with radial basis function kernels, Multi-Layer Perceptrons (MLP) and 3D Convolutional Neural Networks (3DCNN). A leave-one-patient-out cross-validation (LOPOCV) with and without combining these sets was performed. The ROC-AUC score of the 3DCNN was slightly higher than the MLP and SVM with a difference of 0.04 AUC. The best performance was achieved with the 3DCNN for colon cancer and esophagogastric cancer detection with a high ROC-AUC of 0.93. The 3DCNN also achieved the best DICE scores of 0.49 and 0.41 on the colon and esophagogastric datasets, respectively. These scores were significantly improved using a patient-specific decision threshold to 0.58 and 0.51, respectively. This indicates that, in practical use, an HSI-based CAD system using an interactive decision threshold is likely to be valuable. Experiments were also performed to measure the benefits of combining the colorectal and esophagogastric datasets (22 patients), and this yielded significantly better results with the MLP and SVM models

    Wearable infra-red pre-screening smartbra for early detection of breast cancer

    Get PDF
    Breast cancer is the most common cancer in women worldwide, comprising 16% of all female cancers and early diagnosis remains an important detection strategy. The aim of this study was to design and implement a user-friendly SmartBra. An infra-red (IR) imaging sensor was deployed to determine the temperature profile of the breast for this application. The device was tested with approval from the Health Research Ethics  Committee of the Lagos University Teaching Hospital using healthy persons and persons already diagnosed with different stages of breast cancer. The results showed high sensitivity and specificity with good intra-examiner reliability for absolute values of mean temperature for the right breast and very good reproducibility for the left breast. Data for healthy participants revealed that the difference in absolute temperature between the left and right breast was less than 1oC, while that of the sick (cancer) participants indicated values greater than 1oC. The device is safe and easy to use and therefore can serve as an adjunct diagnostic device for early detection of breast cancer. Keywords: breast cancer, early detection, infra-red thermography, mammography

    Diagnosis and Treatment of Small Bowel Disorders

    Get PDF
    Over the last few decades, remarkable progress has been made in understanding the aetiology and pathophysiology of diseases and many new theories emphasize the importance of the small bowel ‘ecosystem’ in the pathogenesis of acute and chronic illness. Emerging factors such as microbiome, stem cells, innate intestinal immunity and the enteric nervous system along with mucosal and endothelial barriers have key role in the development of gastrointestinal and extra-intestinal diseases. Therefore, the small intestine is considered key player in metabolic disease development, including diabetes mellitus, and other diet-related disorders such as celiac and non-celiac enteropathies. Another major field is drug metabolism and its interaction with microbiota. Moreover, the emergence of gut-brain, gut-liver and gut-blood barriers points toward the important role of small intestine in the pathogenesis of common disorders, such as liver disease, hypertension and neurodegenerative disease. However, the small bowel remains an organ that is difficult to fully access and assess and accurate diagnosis often poses a clinical challenge. Eventually, the therapeutic potential remains untapped. Therefore, it is due time to direct our interest towards the small intestine and unravel the interplay between small-bowel and other gastrointestinal (GI) and non-GI related maladies

    Multispectral image analysis in laparoscopy – A machine learning approach to live perfusion monitoring

    Get PDF
    Modern visceral surgery is often performed through small incisions. Compared to open surgery, these minimally invasive interventions result in smaller scars, fewer complications and a quicker recovery. While to the patients benefit, it has the drawback of limiting the physician’s perception largely to that of visual feedback through a camera mounted on a rod lens: the laparoscope. Conventional laparoscopes are limited by “imitating” the human eye. Multispectral cameras remove this arbitrary restriction of recording only red, green and blue colors. Instead, they capture many specific bands of light. Although these could help characterize important indications such as ischemia and early stage adenoma, the lack of powerful digital image processing prevents realizing the technique’s full potential. The primary objective of this thesis was to pioneer fluent functional multispectral imaging (MSI) in laparoscopy. The main technical obstacles were: (1) The lack of image analysis concepts that provide both high accuracy and speed. (2) Multispectral image recording is slow, typically ranging from seconds to minutes. (3) Obtaining a quantitative ground truth for the measurements is hard or even impossible. To overcome these hurdles and enable functional laparoscopy, for the first time in this field physical models are combined with powerful machine learning techniques. The physical model is employed to create highly accurate simulations, which in turn teach the algorithm to rapidly relate multispectral pixels to underlying functional changes. To reduce the domain shift introduced by learning from simulations, a novel transfer learning approach automatically adapts generic simulations to match almost arbitrary recordings of visceral tissue. In combination with the only available video-rate capable multispectral sensor, the method pioneers fluent perfusion monitoring with MSI. This system was carefully tested in a multistage process, involving in silico quantitative evaluations, tissue phantoms and a porcine study. Clinical applicability was ensured through in-patient recordings in the context of partial nephrectomy; in these, the novel system characterized ischemia live during the intervention. Verified against a fluorescence reference, the results indicate that fluent, non-invasive ischemia detection and monitoring is now possible. In conclusion, this thesis presents the first multispectral laparoscope capable of videorate functional analysis. The system was successfully evaluated in in-patient trials, and future work should be directed towards evaluation of the system in a larger study. Due to the broad applicability and the large potential clinical benefit of the presented functional estimation approach, I am confident the descendants of this system are an integral part of the next generation OR

    Seeing the Big Picture: System Architecture Trends in Endoscopy and LED-Based hyperspectral Subsystem Intergration

    Get PDF
    Early-stage colorectal lesions remain difficult to detect. Early development of neoplasia tends to be small (less than 10 mm) and flat and difficult to distinguish from surrounding mucosa. Additionally, optical diagnosis of neoplasia as benign or malignant is problematic. Low rates of detection of these lesions allow for continued growth in the colorectum and increased risk of cancer formation. Therefore, it is crucial to detect neoplasia and other non-neoplastic lesions to determine risk and guide future treatment. Technology for detection needs to enhance contrast of subtle tissue differences in the colorectum and track multiple biomarkers simultaneously. This work implements one such technology with the potential to achieve the desired multi-contrast outcome for endoscopic screenings: hyperspectral imaging. Traditional endoscopic imaging uses a white light source and a RGB detector to visualize the colorectum using reflected light. Hyperspectral imaging (HSI) acquires an image over a range of individual wavelength bands to create an image hypercube with a wavelength dimension much deeper and more sensitive than that of an RGB image. A hypercube can consist of reflectance or fluorescence (or both) spectra depending on the filtering optics involved. Prior studies using HSI in endoscopy have normally involved ex vivo tissues or xiv optics that created a trade-off between spatial resolution, spectral discrimination and temporal sampling. This dissertation describes the systems design of an alternative HSI endoscopic imaging technology that can provide high spatial resolution, high spectral distinction and video-rate acquisition in vivo. The hyperspectral endoscopic system consists of a novel spectral illumination source for image acquisition dependent on the fluorescence excitation (instead of emission). Therefore, this work represents a novel contribution to the field of endoscopy in combining excitation-scanning hyperspectral imaging and endoscopy. This dissertation describes: 1) systems architecture of the endoscopic system in review of previous iterations and theoretical next-generation options, 2) feasibility testing of a LED-based hyperspectral endoscope system and 3) another LED-based spectral illuminator on a microscope platform to test multi-spectral contrast imaging. The results of the architecture point towards an endoscopic system with more complex imaging and increased computational capabilities. The hyperspectral endoscope platform proved feasibility of a LED-based spectral light source with a multi-furcated solid light guide. Another LED-based design was tested successfully on a microscope platform with a dual mirror array similar to telescope designs. Both feasibility tests emphasized optimization of coupling optics and combining multiple diffuse light sources to a common output. These results should lead to enhanced imagery for endoscopic tissue discrimination and future optical diagnosis for routine colonoscopy

    Shedding New Light on Cancer with Non-Linear Optical Microscopy

    Get PDF
    Oesophageal cancer, one of the most aggressive cancer types is considered the seventh most common cancer in terms of incidence and the sixth most common cause of cancer deaths worldwide due to late diagnosis. In the UK, the oesophageal cancer incidence rate has increased by approximately 10% since the 1990s. At present, histopathology is the gold standard method for the diagnosis of oesophageal cancer, which rely on biopsy collection using an endoscopy procedure followed by the histological sample’s preparation. This method is invasive, time-consuming, and largely based on the pathologist's experience of diagnosis. Therefore, new diagnostic techniques are required to provide non-invasive methods for early and rapid diagnosis. Raman scattering has the potential to replace histopathology as the gold standard for diagnosis for a wide range of diseases. Raman scattering provides stain-free imaging with chemical-specificity derived from the intrinsic vibrational signatures of biomolecules. However, the low scattering cross-section severely limits the image acquisition speeds and like conventional histopathology, requires tissue sectioning to provide morphological imaging below the surface of tissue biopsies. Stimulated Raman scattering (SRS) has recently appeared as a powerful technique for (near)real-time Raman imaging in intact tissue samples. Thework in this thesis aimed to develop the stimulated Raman scattering (SRS) for rapid wavelength tuning and chemical imaging of clinical samples, such as cancer biopsies. This was achieved by making modification to a laser cavity to reduce the time of the wavelength tuning by approximately 35 times compared to the original cavity design. Furthermore, the cavity modification led to the spectra being separated efficiently and the wavelength tuning controlled by cavity length changes only. The improved design was applied to image frozen oesophageal tissues, which have four major pathology groups, normal, inflammation, columnar-lined (Barrett's) oesophagus (CLO) and low-grade dysplasia. A large area imaging was performed using the SRS technique at 2930 cm-1 for four different oesophageal tissues, which presented the morphological and structural information. However, histopathological diagnosis depends on the visualisation of the cell nucleus in the tissue. This component was not highlighted until the stimulated Raman histology approach was developed for small regions of interest in the CLO and the low-grade dysplasia sample, which required two different frequencies at 2840 cm-1 and 2930 cm-1. All SRS images were compared to haematoxlin and eosin (H&E) stained sections. Further comparisons were made between SRS and Raman imaging techniques, with SRS offering faster acquisition times and a higher spatial resolution. The spectral signature for the different pathological groups in the oesophageal tissues were explored in the high wavenumber (2800 – 2930 cm-1) region using hyperspectral SRS and compared with the spectra from the Raman. K-means clustering analysis was used to explore the morphochemical information using the CLO and low-grade dysplasia sections. Both techniques were able to demonstrate unique information such as the epithelial cells that form the oesophagus glands and surrounding connective tissue. It is concluded that SRS has the power to be one of the ideal imaging modalities to gather the molecular information in biological samples. However, it still needs more development due to the complexity of the system

    Development of deep learning methods for head and neck cancer detection in hyperspectral imaging and digital pathology for surgical guidance

    Get PDF
    Surgeons performing routine cancer resections utilize palpation and visual inspection, along with time-consuming microscopic tissue analysis, to ensure removal of cancer. Despite this, inadequate surgical cancer margins are reported for up to 10-20% of head and neck squamous cell carcinoma (SCC) operations. There exists a need for surgical guidance with optical imaging to ensure complete cancer resection in the operating room. The objective of this dissertation is to evaluate hyperspectral imaging (HSI) as a non-contact, label-free optical imaging modality to provide intraoperative diagnostic information. For comparison of different optical methods, autofluorescence, RGB composite images synthesized from HSI, and two fluorescent dyes are also acquired and investigated for head and neck cancer detection. A novel and comprehensive dataset was obtained of 585 excised tissue specimens from 204 patients undergoing routine head and neck cancer surgeries. The first aim was to use SCC tissue specimens to determine the potential of HSI for surgical guidance in the challenging task of head and neck SCC detection. It is hypothesized that HSI could reduce time and provide quantitative cancer predictions. State-of-the-art deep learning algorithms were developed for SCC detection in 102 patients and compared to other optical methods. HSI detected SCC with a median AUC score of 85%, and several anatomical locations demonstrated good SCC detection, such as the larynx, oropharynx, hypopharynx, and nasal cavity. To understand the ability of HSI for SCC detection, the most important spectral features were calculated and correlated with known cancer physiology signals, notably oxygenated and deoxygenated hemoglobin. The second aim was to evaluate HSI for tumor detection in thyroid and salivary glands, and RGB images were synthesized using the spectral response curves of the human eye for comparison. Using deep learning, HSI detected thyroid tumors with 86% average AUC score, which outperformed fluorescent dyes and autofluorescence, but HSI-synthesized RGB imagery performed with 90% AUC score. The last aim was to develop deep learning algorithms for head and neck cancer detection in hundreds of digitized histology slides. Slides containing SCC or thyroid carcinoma can be distinguished from normal slides with 94% and 99% AUC scores, respectively, and SCC and thyroid carcinoma can be localized within whole-slide images with 92% and 95% AUC scores, respectively. In conclusion, the outcomes of this thesis work demonstrate that HSI and deep learning methods could aid surgeons and pathologists in detecting head and neck cancers.Ph.D

    Information Extraction Techniques in Hyperspectral Imaging Biomedical Applications

    Get PDF
    Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications
    corecore