749 research outputs found

    IoT-Based Solar Energy

    Get PDF
    Problems with a shortage of electricity often occur, especially in a rural area, which makes it difficult to do daily work and makes it difficult to communicate with outsiders. Problems with a shortage of electricity can affect the daily activities of residents, especially in rural areas, and can pose risks in the event of emergencies such as illnesses that require mechanical treatment. If this problem persists it could be detrimental to the population who do not have electricity. Electricity is very important as it can make it easier for people to do the work and for the people in the interior to get information. Problems with a shortage of electricity can affect communication networks such as the internet, radio waves, mobile phone lines and so on. In the current state of technology development, the creation of technologies that can solve this problem must be done and referred to as Solar Energy. It is an IoT research that absorbs energy from the sun to produce electricity in every home. The movement of this research can be controlled manually by using a mobile phone connected to the internet and also controlled automatically by the direction of sunlight. With this, updates from users are a must. This meets the user's need for a device that can be used continuously

    Aircraft-sized anechoic chambers for electronic warfare, radar and other electromagnetic engineering evaluation

    Get PDF
    This paper considers capabilities and benefits of aircraft-sized radio/radar frequency anechoic chambers for Test and Evaluation (T&E) of Electronic Warfare (EW), radar and other electromagnetics aspects of air and ground platforms. There are few such chambers worldwide. Initially developed to reduce costs, timescales and risks associated with open-air range flight testing of EW systems, their utility has expanded to most areas of platforms’ electromagnetics’ T&E. A key feature is the ability to conduct T&E of nationally sensitive equipment and systems, fully installed on platforms, in absolute privacy. Chambers’ capabilities and uses are described, with emphasis on key infrastructure and instrumentation. Non-EW uses are identified and selected topics elaborated. Operation and maintenance are discussed, based on experiential knowledge from international use and the authors’ 30 years’ involvement with BAE Systems’ EW Test Facility. A view is provided of trends and challenges whose resolution could further increase chamber utility. National affordability challenges also suggest utility expansion to support continuing moves, from expensive and difficult to repeat flight test and operational evaluation trials, towards an affordability-driven optimal balance between modelling and simulation, and real-world testing of platforms

    A secure architecture enabling end-user privacy in the context of commercial wide-area location-enhanced web services

    Get PDF
    Mobile location-based services have raised privacy concerns amongst mobile phone users who may need to supply their identity and location information to untrustworthy third parties in order to access these applications. Widespread acceptance of such services may therefore depend on how privacy sensitive information will be handled in order to restore users’ confidence in what could become the “killer app” of 3G networks. The work reported in this thesis is part of a larger project to provide a secure architecture to enable the delivery of location-based services over the Internet. The security of transactions and in particular the privacy of the information transmitted has been the focus of our research. In order to protect mobile users’ identities, we have designed and implemented a proxy-based middleware called the Orient Platform together with its Orient Protocol, capable of translating their real identity into pseudonyms. In order to protect users’ privacy in terms of location information, we have designed and implemented a Location Blurring algorithm that intentionally downgrades the quality of location information to be used by location-based services. The algorithm takes into account a blurring factor set by the mobile user at her convenience and blurs her location by preventing real-time tracking by unauthorized entities. While it penalizes continuous location tracking, it returns accurate and reliable information in response to sporadic location queries. Finally, in order to protect the transactions and provide end-to-end security between all the entities involved, we have designed and implemented a Public Key Infrastructure based on a Security Mediator (SEM) architecture. The cryptographic algorithms used are identitybased, which makes digital certificate retrieval, path validation and revocation redundant in our environment. In particular we have designed and implemented a cryptographic scheme based on Hess’ work [108], which represents, to our knowledge, the first identity-based signature scheme in the SEM setting. A special private key generation process has also been developed in order to enable entities to use a single private key in conjunction with multiple pseudonyms, which significantly simplifies key management. We believe our approach satisfies the security requirements of mobile users and can help restore their confidence in location-based services

    Automated catheter navigation with electromagnetic image guidance

    Get PDF
    This paper describes a novel method of controlling an endoscopic catheter by using an automated catheter tensioning system with the objective of providing clinicians with improved manipulation capabilities within the patient. Catheters are used in many clinical procedures to provide access to the cardiopulmonary system. Control of such catheters is performed manually by the clinicians using a handle, typically actuating a single or opposing set of pull wires. Such catheters are generally actuated in a single plane, requiring the clinician to rotate the catheter handle to navigate the system. The automation system described here allows closed-loop control of a custom bronchial catheter in tandem with an electromagnetic tracking of the catheter tip and image guidance by using a 3D Slicer. An electromechanical drive train applies tension to four pull wires to steer the catheter tip, with the applied force constantly monitored through force sensing load cells. The applied tension is controlled through a PC connected joystick. An electromagnetic sensor embedded in the catheter tip enables constant real-time position tracking, whereas a working channel provides a route for endoscopic instruments. The system is demonstrated and tested in both a breathing lung model and a preclinical animal study. Navigation to predefined targets in the subject's airways by using the joystick while using virtual image guidance and electromagnetic tracking was demonstrated. Average targeting times were 29 and 10 s, respectively, for the breathing lung and live animal studies. This paper presents the first reported remote controlled bronchial working channel catheter utilizing electromagnetic tracking and has many implications for future development in endoscopic and catheter-based procedures

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    State-of-the-Art Sensors for Remote Care of People with Dementia during a Pandemic: A Systematic Review

    Get PDF
    In the last decade, there has been a significant increase in the number of people diagnosed with dementia. With diminishing public health and social care resources, there is substantial need for assistive technology-based devices that support independent living. However, existing devices may not fully meet these needs due to fears and uncertainties about their use, educational support, and finances. Further challenges have been created by COVID-19 and the need for improved safety and security. We have performed a systematic review by exploring several databases describing assistive technologies for dementia and identifying relevant publications for this review. We found there is significant need for appropriate user testing of such devices and have highlighted certifying bodies for this purpose. Given the safety measures imposed by the COVID-19 pandemic, this review identifies the benefits and challenges of existing assistive technologies for people living with dementia and their caregivers. It also provides suggestions for future research in these areas

    Rfid-based business process and workflow management in healthcare:design and implementation

    Get PDF
    The healthcare system in the United States is considered one of the most complex systems and has encountered challenges related to patient safety concerns, escalating costs, and unpredictable outcomes. Many of these problems share a common cause - a lack of efficient business process management and visibility into the real-time location, status, and condition of medical resources. The goal of this research is to propose a newly integrated system to model, automate, and monitor healthcare business processes using an automatic data collection technology to record the timing and location of activities and identify their various resources. This dissertation makes several contributions to the design and implementation of RFID-based business process and workflow management in healthcare. First, I propose a road map to implement RFID in hospitals with performance matrixes for technology evaluation, key criteria for resolution level setting, and business rules for information extraction. Second, RFID-based business process management (BPM) concepts and workflow technologies are used to transform the reprocessing procedures in a Sterile Processing Department (SPD) for the purpose of reducing infections caused by unclean reusable medical equipment. In the proposed pattern for healthcare business process management, the importance of execution status control is emphasized as a key component to handle complex and dynamic healthcare processes. A five-level framework for service-oriented business process management is designed for SPDs to share information, integrate distributed systems, and manage heterogeneous resources among multiple stakeholders. This research proposes a healthcare workflow system as a deliverable solution to manage the execution phase of reprocessing procedures, which supports the design, execution, monitoring, and automation of services supplied in SPDs. RFID techniques are adopted to collect relative real-time data for SPD performance management. Finally, by identifying key architectural requirements, the subsystems of a service-oriented architecture for the SPD workflow prototyping system, SPDFLOW, are discussed in detail. This research is the first attempt to explore healthcare workflow technologies in the SPD domain to improve the quality of reusable medical equipment and ensure patient safety
    • 

    corecore