3,824 research outputs found

    Finding any Waldo: zero-shot invariant and efficient visual search

    Full text link
    Searching for a target object in a cluttered scene constitutes a fundamental challenge in daily vision. Visual search must be selective enough to discriminate the target from distractors, invariant to changes in the appearance of the target, efficient to avoid exhaustive exploration of the image, and must generalize to locate novel target objects with zero-shot training. Previous work has focused on searching for perfect matches of a target after extensive category-specific training. Here we show for the first time that humans can efficiently and invariantly search for natural objects in complex scenes. To gain insight into the mechanisms that guide visual search, we propose a biologically inspired computational model that can locate targets without exhaustive sampling and generalize to novel objects. The model provides an approximation to the mechanisms integrating bottom-up and top-down signals during search in natural scenes.Comment: Number of figures: 6 Number of supplementary figures: 1

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems

    The Role of Early Recurrence in Improving Visual Representations

    Get PDF
    This dissertation proposes a computational model of early vision with recurrence, termed as early recurrence. The idea is motivated from the research of the primate vision. Specifically, the proposed model relies on the following four observations. 1) The primate visual system includes two main visual pathways: the dorsal pathway and the ventral pathway; 2) The two pathways respond to different visual features; 3) The neurons of the dorsal pathway conduct visual information faster than that of the neurons of the ventral pathway; 4) There are lower-level feedback connections from the dorsal pathway to the ventral pathway. As such, the primate visual system may implement a recurrent mechanism to improve visual representations of the ventral pathway. Our work starts from a comprehensive review of the literature, based on which a conceptualization of early recurrence is proposed. Early recurrence manifests itself as a form of surround suppression. We propose that early recurrence is capable of refining the ventral processing using results of the dorsal processing. Our work further defines a set of computational components to formalize early recurrence. Although we do not intend to model the true nature of biology, to verify that the proposed computation is biologically consistent, we have applied the model to simulate a neurophysiological experiment of a bar-and-checkerboard and a psychological experiment involving a moving contour illusion. Simulation results indicated that the proposed computation behaviourally reproduces the original observations. The ultimate goal of this work is to investigate whether the proposal is capable of improving computer vision applications. To do this, we have applied the model to a variety of applications, including visual saliency and contour detection. Based on comparisons against the state-of-the-art, we conclude that the proposed model of early recurrence sheds light on a generally applicable yet lightweight approach to boost real-life application performance

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    corecore