2 research outputs found

    Multi-target Attachment for Surgical Instrument Tracking

    Get PDF
    The pose estimation of a surgical instrument is a common problem in the new needs of medical science. Many instrument tracking methods use markers with a known geometry that allows for solving the instrument pose as detected by a camera. However, marker occlusion happens, and it hinders correct pose estimation. In this work, we propose an adaptable multi-target attachment with ArUco markers to solve occlusion problems on tracking a medical instrument like an ultrasound probe or a scalpel. Our multi-target system allows for precise and redundant real-time pose estimation implemented in OpenCV. Encouraging results show that the multi-target device may prove useful in the clinical settin

    Contribuciones al uso de marcadores para Navegaci贸n Aut贸noma y Realidad Aumentada

    Get PDF
    Square planar markers are a widely used tools for localization and tracking due to their low cost and high performance. Many applications in Robotics, Unmanned Vehicles and Augmented Reality employ these markers for camera pose estimation with high accuracy. Nevertheless, marker-based systems are affected by several factors that limit their performance. First, the marker detection process is a time-consuming task, which is intensified as the image size increases. As a consequence, the current high-resolution cameras has weakened the processing efficiency of traditional marker systems. Second, marker detection is affected by the presence of noise, blurring and occlusion. The movement of the camera produces image blurriness, generated even by small movements. Furthermore, the marker may be partially or completely occluded in the image, so that it is no longer detected. This thesis deals with the above limitations, proposing novel methodologies and strategies for successful marker detection improving both the efficiency and robustness of these systems. First, a novel multi-scale approach has been developed to speed up the marker detection process. The method takes advantage of the different resolutions at which the image is represented to predict at runtime the optimal scale for detection and identification, as well as following a corner upsampling strategy necessary for an accurate pose estimation. Second, we introduce a new marker design, Fractal Marker, which using a novel keypoint-based method achieves detection even under severe occlusion, while allowing detection over a wider range of distance than traditional markers. Finally, we propose a new marker detection strategy based on Discriminative Correlation Filters (DCF), where the marker and its corners represented in the frequency domain perform more robust and faster detections than state-ofthe- art methods, even under extreme blur conditions.Los marcadores planos cuadrados son una de las herramientas ampliamente utilizadas para la localizaci贸n y el tracking debido a su bajo coste y su alto rendimiento. Muchas aplicaciones en Rob贸tica, Veh铆culos no Tripulados y Realidad Aumentada emplean estos marcadores para estimar con alta precisi贸n la posici贸n de la c谩mara. Sin embargo, los sistemas basados en marcadores se ven afectados por varios factores que limitan su rendimiento. En primer lugar, el proceso de detecci贸n de marcadores es una tarea que requiere mucho tiempo y este incrementa a medida que aumenta el tama帽o de la imagen. En consecuencia, las actuales c谩maras de alta resoluci贸n han debilitado la eficacia del procesamiento de los sistemas de marcadores tradicionales. Por otra parte, la detecci贸n de marcadores se ve afectada por la presencia de ruido, desenfoque y oclusi贸n. El movimiento de la c谩mara produce desenfoque de la imagen, generado incluso por peque帽os movimientos. Adem谩s, el marcador puede aparecer en la imagen parcial o completamente ocluido, dejando de ser detectado. Esta tesis aborda las limitaciones anteriores, proponiendo metodolog铆as y estrategias novedosas para la correcta detecci贸n de marcadores, mejorando as铆 tanto la eficiencia como la robustez de estos sistemas. En primer lugar, se ha desarrollado un novedoso enfoque multiescala para acelerar el proceso de detecci贸n de marcadores. El m茅todo aprovecha las diferentes resoluciones en las que la imagen est谩 representada para predecir en tiempo de ejecuci贸n la escala 贸ptima para la detecci贸n e identificaci贸n, a la vez que sigue una estrategia de upsampling de las esquinas necesaria para estimar la pose con precisi贸n. En segundo lugar, introducimos un nuevo dise帽o de marcador, Fractal Marker, que, mediante un m茅todo basado en keypoints, logra detecciones incluso en casos de oclusi贸n extrema, al tiempo que permite la detecci贸n en un rango de distancias m谩s amplio que los marcadores tradicionales. Por 煤ltimo, proponemos una nueva estrategia de detecci贸n de marcadores basada en Discriminate Correlation Filters (DCF), donde el marcador y sus esquinas representadas en el dominio de la frecuencia realizan detecciones m谩s robustas y r谩pidas que los m茅todos de referencia, incluso bajo condiciones extremas de emborronamiento
    corecore