4,356 research outputs found

    Design method for a reconfigurable mechanism for finger rehabilitation

    Get PDF
    This paper presents a design method for a reconfigurable single degree-of-freedom mechanism for robotic assisted finger therapy following a stroke. The mechanism is a four-bar linkage that in combination with variable link lengths is capable of reproducing a power grasp finger motion for a wide variety of finger sizes. This is accomplished through an optimization procedure that determines the parameters of the four-bar linkage needed to fit the sampled range of finger trajectories. The linkage is located behind the hand and attaches to the medial phalanx of the finger just above the distal interphalangeal joint. In addition, the mechanism is designed so that it does not interfere with finger motion and so that the subject‘s fingertips and palm are free to touch real objects and experience tactile feedback. In future implementations, the mechanism could be used for a single finger or in parallel with other similar mechanisms to exercise multiple fingers simultaneously. Although the specific application presented here is the four-bar mechanism and finger power grasp motion, the developed design methods may be applied to a much broader range of mechanisms and applications where scalability for human-machine interface is required.Postprint (published version

    Cost-Effective optimization of an Upper Limb Rehabilitation Mechanism

    Get PDF
    In recent years, a vast variety of mechanisms for upper limb rehabilitation have been designed by researchers. The majority of these designs are based on multi degree of freedom and open kinematic chain assemblies. The application of such mechanisms can offer significant aid in successful treatment. Their disadvantages, however, include complexity and costliness. As an alternative to these, other types of mechanisms, such as four and six bar linkages, can be employed in rehabilitation of patients with arm-motion disabilities. These alternative mechanisms are simpler and cheaper, but still have the capacity to offer complex kinematic characteristics

    An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications

    Get PDF
    In recent decades, many researchers have focused on the design and development of exoskeletons. Several strategies have been proposed to develop increasingly more efficient and biomimetic mechanisms. However, existing exoskeletons tend to be expensive and only available for a few people. This paper introduces a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials. Regarding mechanics, the proposed design significantly reduces the motor torque requirements, because a high cost is usually associated with high-torque actuation. Regarding the electronics, we aim to exploit the microprocessor peripherals to obtain parallel and real-time execution of communication and control tasks without relying on expensive RTOSs. Regarding sensing, we avoid the use of expensive force sensors. Advanced control and rehabilitation features are implemented, and an intuitive user interface is developed. To experimentally validate the functionality of the proposed exoskeleton, a rehabilitation exercise in the form of a pick-and-place task is considered. Experimentally, peak torques are reduced by 89% for the shoulder and by 84% for the elbow

    Design and Development of an Upper Limb Rehabilitative Robot with Dual Functionality

    Get PDF
    The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot

    Design and Evaluation of Pediatric Gait Rehabilitation Robots

    Get PDF
    Gait therapy methodologies were studied and analyzed for their potential for pediatric patients. Using data from heel, metatarsal, and toe trajectories, a nominal gait trajectory was determined using Fourier transforms for each foot point. These average trajectories were used as a basis of evaluating each gait therapy mechanism. An existing gait therapy device (called ICARE) previously designed by researchers, including engineers at the University of Nebraska-Lincoln, was redesigned to accommodate pediatric patients. Unlike many existing designs, the pediatric ICARE did not over- or under-constrain the patient’s leg, allowing for repeated, comfortable, easily-adjusted gait motions. This design was assessed under clinical testing and deemed to be acceptable. A gait rehabilitation device was designed to interface with both pediatric and adult patients and more closely replicate the gait-like metatarsal trajectory compared to an elliptical machine. To accomplish this task, the nominal gait path was adjusted to accommodate for rotation about the toe, which generated a new trajectory that was tangent to itself at the midpoint of the stride. Using knowledge of the bio-mechanics of the foot, the gait path was analyzed for its applicability to the general population. Several trajectory-replication methods were evaluated, and the crank-slider mechanism was chosen for its superior performance and ability to mimic the gait path adequately. Adjustments were made to the gait path to further optimize its realization through the crank-slider mechanism. Two prototypes were constructed according to the slider-crank mechanism to replicate the gait path identified. The first prototype, while more accurately tracing the gait path, showed difficulty in power transmission and excessive cam forces. This prototype was ultimately rejected. The second prototype was significantly more robust. However, it lacked several key aspects of the original design that were important to matching the design goals. Ultimately, the second prototype was recommended for further work in gait-replication research. Advisor: Carl A. Nelso

    Mechanism design and analysis of a proposed wheelchair-exoskeleton hybrid robot for assisting human movement

    Get PDF
    As a conventional mobile assistance device, a wheelchair makes people suffer from skin injuries such as bed sores and ulcer, owing to sitting on a wheelchair for a long period. And the wheelchair is barely able to adapt to complex terrains, such as stairs. With the development of robotic technology, the rise of lower-limb exoskeleton robotics provides a new means of motion assistance, and provides training of motor ability. However, it can't support a user to compete long-distance movement because a user need consume much energy to keep balance. Considering the merits and demerits of wheelchairs and exoskeletons, we propose a novel hybrid motion assistant robot that combines both. The biggest challenge is the design of a mechanism that can transform the robot from a wheelchair into an exoskeleton, as well as the reverse transformation. To achieve this goal, the mechanism must be able to achieve three configurations: the wheelchair configuration, the support configuration, and the exoskeleton configuration. To reduce the weight of the robot and make it more compact, the linkages and actuators in the mechanism are designed to be reusable when the configuration changes. The mechanism is designed based on the analysis of functional requirements, and distributed synthesis of the mechanism is adopted. The kinematics and statics of every configuration are discussed in detail, to obtain the most reasonable dimensions using the particle swarm optimization algorithm. The mechanism performance is simulated and verified using ADAMS software. Finally, an experimental prototype is constructed for preliminary tests.</p

    Design of a Two-DOFs Driving Mechanism for a Motion-Assisted Finger Exoskeleton

    Get PDF
    This paper presents a novel exoskeleton mechanism for finger motion assistance. The exoskeleton is designed as a serial 2-degrees-of-freedom wearable mechanism that is able to guide human finger motion. The design process starts by analyzing the motion of healthy human fingers by video motion tracking. The experimental data are used to obtain the kinematics of a human finger. Then, a graphic/geometric synthesis procedure is implemented for achieving the dimensional synthesis of the proposed novel 2 degrees of freedom linkage mechanism for the finger exoskeleton. The proposed linkage mechanism can drive the three finger phalanxes by using two independent actuators that are both installed on the back of the hand palm. A prototype is designed based on the proposed design by using additive manufacturing. Results of numerical simulations and experimental tests are reported and discussed to prove the feasibility and the operational effectiveness of the proposed design solution that can assist a wide range of finger motions with proper adaptability to a variety of human fingers

    Robotics rehabilitation of the elbow based on surface electromyography signals

    Get PDF
    Physical rehabilitation based on robotic systems has the potential to cover the patient’s need of improvement of upper extremity functionalities. In this article, the state of the art of resistant and assistive upper limb exoskeleton robots and their control are thoroughly investigated. Afterward, a single-degree-of-freedom exoskeleton matching the elbow–forearm has been advanced to grant a valid rehabilitation therapy for persons with physical disability of upper limb motion. The authors have focused on the control system based on the use of electromyography signals as an input to drive the joint movement and manage the robotics arm. The correlation analysis between surface electromyography signal and the force exerted by the subject was studied in objects’ grasping tests with the purpose of validating the methodology. The authors developed an innovative surface electromyography force–based active control that adjusts the force exerted by the device during rehabilitation. The control was validated by an experimental campaign on healthy subjects simulating disease on an arm, with positive results that confirm the proposed solution and that open the way to future researches

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation

    User-Centered Modelling and Design of Assistive Exoskeletons

    Get PDF
    corecore