3,895 research outputs found

    Mechatronics design and control of radiotherapy phantom

    Get PDF

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate

    Development of Gas Turbine Fast Mathematical Model Simulation Module for Software Complex «Electrodin» based on LabVIEW

    Get PDF
    A fast mathematical model simulation module based on LabVIEW graphical programming environment has been developed. The module will be used for gas turbine and electrical power system co-simulation, and for testing automation of gas turbine automatic control systems

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Remote online machine condition monitoring using advanced internet, wireless and mobile communication technologies

    Get PDF
    A conceptual model with wireless and mobile techniques is developed in this thesis for remote real-time condition monitoring, which is applied for monitoring, diagnosing, and controlling the working conditions of machines. The model has the following major functions: data acquisition, data processing, decision making, and remote communication. The data acquisition module is built up within this model using the sensory technique and data I/O interfaces to acquire the working conditions data of a machine and extract the physical information about the machine (e.g. failure, wear, etc.) for data processing and decision making. The data processing is conducted using digital conversion and feature extraction to process the received analogue condition data and convert the data into the physical quantities of working condition of the machine for sequent fault diagnosis. A real-time fault diagnostic scheme for decision-making is applied based on digital filtering and pattern classification to real-time identify the fault symptom of the machine and provide advice for decision making for maintenance. Process control is implemented to control the operation status of the machine automatically, inform the maintenance personnel diagnostic results and alert the working conditions of the machine. Remote communication with wireless and mobile features greatly advance the machine’s condition monitoring technology with real-time fault diagnostic capacity, by providing a wireless-based platform to enable the implementation of data acquisition, real-time fault diagnosis, and decision making through the Internet, wireless, and mobile phone network. The model integrating above techniques and methods has been applied into the following three areas: (1) Development of a Remote Real-time Condition Monitoring System of Industrial Gearbox, supported by the Stimulation Innovation Success programme (2007-2008); (2) Development of a Remote Control System of Solid Desiccant Dehumidifier for Air Conditioning in Low Carbon Emission Buildings, supported by the Sustainable Construction iNET programme (2009-2010); (3) Development of an Innovative Remote Monitoring System of Thermo-Electric-Generations, supported by the Sustainable Construction iNET programme (2010-2011). The combination of wireless and mobile techniques with data acquisition, real-time fault diagnosis, and decision-making, into a model for remote real-time condition monitoring is a novel contribution to this area

    Development of overcurrent relay model and power system simulator using National Instruments devices in real-time

    Get PDF
    One of the major objectives at Mississippi State University’s Power and Energy Research Laboratory (PERL) is to develop an adaptive protective controller for Shipboard Power System (SPS) protection. This thesis work focuses on developing an overcurrent relay model in LabVIEW software and validating the developed model by conducting Hardware-in-the-Loop (HIL) tests with Real-Time Digital Simulator (RTDS) and commercial Schweitzer Engineering Laboratories (SEL)-351S directional over-current relay. Simulation results show that the developed relay model is quite flexible, efficient and can be used in real-time. Modeling efforts to establish a HIL platform using National Instruments devices have been presented here. This thesis work also proposes a high-performance and low-cost National Instruments-PXI platform for power system simulations. Two-bus, eight-bus and shipboard power system (SPS) test cases are developed using Matlab/Simulink.Software-in-the-Loop (SIL) tests are conducted for these test cases with Matlab/Simulink overcurrent relay model for several fault conditions. To determine the performance of the NI-PXI system, open loop tests are done between the NI-PXI and the SEL-351S relay and these results are compared with the results of open loop test conducted between the RTDS and SEL-351S relay. HIL tests are done between the NI-PXI system and the dSPACE relay model. HIL tests are also done between the NI-PXI and the commercial SEL-351S relay. These results show that the NI-PXI controller can be used as a power system simulator

    Hardware in the Loop Simulation and Control Design for Autonomous Free Running Ship Models

    Get PDF
    This paper presents an hardware-in-the-loop (HIL) simulation system tool to test and validate an autonomous free running model system for ship hydrodynamic studies with a view to verification of the code, the control logic and system peripherals. The computer simulation of the plant model in real-time computer does not require the actual physical system and reduces the development cost and time for control design and testing purposes. The HIL system includes: the actual programmable embedded controller along with peripherals and a plant model virtually simulated in a real-time computer. With regard to ship controller design for ship model testing, this study describes a plant model for surge and a Nomoto first order steering dynamics, both implemented using Simulink software suit. The surge model captures a quasi-steady state relationship between surge speed and the propeller rpms, obtained from simple forward speed towing tank tests or derived analytically. The Nomoto first order steering dynamics is obtained by performing the standard turning circle test at model scale. The control logic obtained is embedded in a NI-cRIO based controller. The surge and steering dynamics models are used to design a proportional-derivative controller and an LQR controller. The controller runs a Linux based real-time operating system programmed using LabVIEW software. The HIL simulation tool allows for the emulation of standard ship hydrodynamic tests consisting of straight line, turning circle and zigzag to validate the combined system performance, prior to actual for use in the autonomous free-running tests

    Internet based data logging and supervisory control of boiler drum level using LabVIEW

    Get PDF
    This work describes a framework of a Internet based data logging and supervisory control of boiler drum level system. The design and implementation of this process is done by the LabVIEW software. The data of the process variables (Temperature and Level) from the boiler system need to be logged in a database for further analysis and supervisory control. A LabVIEW based data logging and supervisory control program simulates the process and the generated data are logged in to the database as text file with proper indication about the status of the process variable (normal or not normal. Three different types of boiler drum level control system are designed in the Circuit Design and Simulation toolkit of LabVIEW. This work provides the knowledge about the Fuzzy Adaptive PID Controller and the various PID controller design methods such as Zeigler-Nichol method, Tyreus-Luyben method, Internal Model Control (IMC). Comparative study is made on the performance of the PID and Fuzzy Adaptive PID controller for better control system design. The internet plays a significant and vital role in the real time control and monitoring of the industrial process. Internet based system control and monitor the plant system remotely from anywhere without any limitation to any geographical region. Internet based boiler control system is developed by a Web Publishing tool in LabVIEW. The use of internet as a communication medium provides the flexible and cost- effective solution. Now, to analyse the performance of boiler drum level control system, Internet based data logging and supervisory control system is designed. Hence, anyone can control and monitor the boiler plant globally
    corecore