280 research outputs found

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    Building high-performance web-caching servers

    Get PDF

    Technology-related disasters:a survey towards disaster-resilient software defined networks

    Get PDF
    Resilience against disaster scenarios is essential to network operators, not only because of the potential economic impact of a disaster but also because communication networks form the basis of crisis management. COST RECODIS aims at studying measures, rules, techniques and prediction mechanisms for different disaster scenarios. This paper gives an overview of different solutions in the context of technology-related disasters. After a general overview, the paper focuses on resilient Software Defined Networks

    Teaching high-performance service in a cluster computing course

    Full text link
    [EN] Most courses on cluster computing in graduate and postgraduate studies are focused on parallel programming and high-performance/high-throughput computing. This is the typical usage of clusters in academia and research centres. However, nowadays, many companies are providing web, mail and, in general, Internet services using computer clusters. These services require a different ``cluster flavour'': high-performance service and high availability. Despite the fact that computer clusters for each environment demand a different configuration, most university cluster computing courses keep focusing only on high-performance computing, ignoring other possibilities. In this paper, we propose several teaching strategies for a course on cluster computing that could fill this gap. The content developed here would be taught as a part of the course. The subject shows several strategies about how to configure, test and evaluate a high-availability/load-balanced Internet server. A virtualization-based platform is used to build a cluster prototype, using Linux as its operating system. Evaluation of the course shows that students knowledge and skills on the subject are improved at the end of the course. On the other hand, regarding the teaching methodology, the results obtained in the yearly survey of the University confirm student satisfaction.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant TIN2015-66972-C5-1-R.LĂłpez RodrĂ­guez, PJ.; Baydal Cardona, ME. (2018). Teaching high-performance service in a cluster computing course. Journal of Parallel and Distributed Computing. 117:138-147. https://doi.org/10.1016/j.jpdc.2018.02.027S13814711

    The Raincore API for clusters of networking elements

    Full text link

    Multifaceted Faculty Network Design and Management: Practice and Experience Report

    Get PDF
    We report on our experience on multidimensional aspects of our faculty's network design and management, including some unique aspects such as campus-wide VLANs and ghosting, security and monitoring, switching and routing, and others. We outline a historical perspective on certain research, design, and development decisions and discuss the network topology, its scalability, and management in detail; the services our network provides, and its evolution. We overview the security aspects of the management as well as data management and automation and the use of the data by other members of the IT group in the faculty.Comment: 19 pages, 11 figures, TOC and index; a short version presented at C3S2E'11; v6: more proofreading, index, TOC, reference

    On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Get PDF
    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program

    Network Fault Tolerance System

    Get PDF
    The world of computers experienced an explosive period of growth toward the end of the 20th century with the widespread availability of the Internet and the development of the World Wide Web. As people began using computer networks for everything from research and communication to banking and commerce, network failures became a greater concern because of the potential to interrupt critical applications. Fault tolerance systems were developed to detect and correct network failures within minutes and eventually within seconds of the failure, but time-critical applications such as military communications, video conferencing, and Web-based sales require better response time than any previous systems could provide. The goal of this thesis was the development and implementation of a Network Fault Tolerance (NFT) system that can detect and recover from failures of network interface cards, network cables, switches, and routers in much less than one second from the time of failure. The problem was divided into two parts: fault tolerance within a single local area network (LAN), and fault tolerance across many local area networks. The first part involves the network interface cards, network cables, and switches within a LAN, which the second part involves the routers that connect LANs into larger internetworks. Both parts of the NFT solution were implemented on Windows NT 4.0 PC\u27s connected by a switched Fast Ethernet network. The NFT system was found to correct system failures within 300 milliseconds of the failure
    • …
    corecore