38,547 research outputs found

    Low-Stress Bicycling and Network Connectivity

    Get PDF
    For a bicycling network to attract the widest possible segment of the population, its most fundamental attribute should be low-stress connectivity, that is, providing routes between people’s origins and destinations that do not require cyclists to use links that exceed their tolerance for traffic stress, and that do not involve an undue level of detour. The objective of this study is to develop measures of low-stress connectivity that can be used to evaluate and guide bicycle network planning. We propose a set of criteria by which road segments can be classified into four levels of traffic stress (LTS). LTS 1 is suitable for children; LTS 2, based on Dutch bikeway design criteria, represents the traffic stress that most adults will tolerate; LTS 3 and 4 represent greater levels of stress. As a case study, every street in San Jose, California, was classified by LTS. Maps in which only bicycle-friendly links are displayed reveal a city divided into islands within which low-stress bicycling is possible, but separated from one another by barriers that can be crossed only by using high-stress links. Two points in the network are said to be connected at a given level of traffic stress if the subnetwork of links that do not exceed the specified level of stress connects them with a path whose length does not exceed a detour criterion (25% longer than the most direct path). For the network as a whole, we demonstrate two measures of connectivity that can be applied for a given level of traffic stress. One is “percent trips connected,” defined as the fraction of trips in the regional trip table that can be made without exceeding a specified level of stress and without excessive detour. This study used the home-to-work trip table, though in principle any trip table, including all trips, could be used. The second is “percent nodes connected,” a cruder measure that does not require a regional trip table, but measures the fraction of nodes in the street network (mostly street intersections) that are connected to each other. Because traffic analysis zones (TAZs) are too coarse a geographic unit for evaluating connectivity by bicycle, we also demonstrate a method of disaggregating the trip table from the TAZ level to census blocks. For any given TAZ, origins in the home-to-work trip table are allocated in proportion to population, while destinations are allocated based on land-use data. In the base case, the fraction of work trips up to six miles long that are connected at LTS 2 is 4.7%, providing a plausible explanation for the city’s low bicycling share. We show that this figure would almost triple if a proposed slate of improvements, totaling 32 miles in length but with strategically placed segments that provide low-stress connectivity across barriers, were implemented

    Promoting Bicycle Commuter Safety, Research Report 11-08

    Get PDF
    We present an overview of the risks associated with cycling to emphasize the need for safety. We focus on the application of frameworks from social psychology to education, one of the 5 Es—engineering, education, enforcement, encouragement, and evaluation. We use the structure of the 5 Es to organize information with particular attention to engineering and education in the literature review. Engineering is essential because the infrastructure is vital to protecting cyclists. Education is emphasized since the central focus of the report is safety

    Traffic flow on realistic road networks with adaptive traffic lights

    Full text link
    We present a model of traffic flow on generic urban road networks based on cellular automata. We apply this model to an existing road network in the Australian city of Melbourne, using empirical data as input. For comparison, we also apply this model to a square-grid network using hypothetical input data. On both networks we compare the effects of non-adaptive vs adaptive traffic lights, in which instantaneous traffic state information feeds back into the traffic signal schedule. We observe that not only do adaptive traffic lights result in better averages of network observables, they also lead to significantly smaller fluctuations in these observables. We furthermore compare two different systems of adaptive traffic signals, one which is informed by the traffic state on both upstream and downstream links, and one which is informed by upstream links only. We find that, in general, both the mean and the fluctuation of the travel time are smallest when using the joint upstream-downstream control strategy.Comment: 41 pages, pdflate

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San José, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Traffic flow modeling and forecasting using cellular automata and neural networks : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    In This thesis fine grids are adopted in Cellular Automata (CA) models. The fine-grid models are able to describe traffic flow in detail allowing position, speed, acceleration and deceleration of vehicles simulated in a more realistic way. For urban straight roads, two types of traffic flow, free and car-following flow, have been simulated. A novel five-stage speed-changing CA model is developed to describe free flow. The 1.5-second headway, based on field data, is used to simulate car-following processes, which corrects the headway of 1 second used in all previous CA models. Novel and realistic CA models, based on the Normal Acceptable Space (NAS) method, are proposed to systematically simulate driver behaviour and interactions between drivers to enter single-lane Two-Way Stop-Controlled (TWSC) intersections and roundabouts. The NAS method is based on the two following Gaussian distributions. Distribution of space required for all drivers to enter intersections or roundabouts is assumed to follow a Gaussian distribution, which corresponds to heterogeneity of driver behaviour. While distribution of space required for a single driver to enter an intersection or roundabout is assumed to follow another Gaussian distribution, which corresponds to inconsistency of driver behavior. The effects of passing lanes on single-lane highway traffic are investigated using fine grids CA. Vehicles entering, exiting from and changing lanes on passing lane sections are discussed in detail. In addition, a Genetic Algorithm-based Neural Network (GANN) method is proposed to predict Short-term Traffic Flow (STF) in urban networks, which is expected to be helpful for traffic control. Prediction accuracy and generalization ability of NN are improved by optimizing the number of neurons in the hidden layer and connection weights of NN using genetic operations such as selection, crossover and mutation
    • …
    corecore