153,839 research outputs found

    ERASMUS: Efficient Remote Attestation via Self- Measurement for Unattended Settings

    Full text link
    Remote attestation (RA) is a popular means of detecting malware in embedded and IoT devices. RA is usually realized as an interactive protocol, whereby a trusted party -- verifier -- measures integrity of a potentially compromised remote device -- prover. Early work focused on purely software-based and fully hardware-based techniques, neither of which is ideal for low-end devices. More recent results have yielded hybrid (SW/HW) security architectures comprised of a minimal set of features to support efficient and secure RA on low-end devices. All prior RA techniques require on-demand operation, i.e, RA is performed in real time. We identify some drawbacks of this general approach in the context of unattended devices: First, it fails to detect mobile malware that enters and leaves the prover between successive RA instances. Second, it requires the prover to engage in a potentially expensive (in terms of time and energy) computation, which can be harmful for critical or real-time devices. To address these drawbacks, we introduce the concept of self-measurement where a prover device periodically (and securely) measures and records its own software state, based on a pre-established schedule. A possibly untrusted verifier occasionally collects and verifies these measurements. We present the design of a concrete technique called ERASMUS : Efficient Remote Attestation via Self-Measurement for Unattended Settings, justify its features and evaluate its performance. In the process, we also define a new metric -- Quality of Attestation (QoA). We argue that ERASMUS is well-suited for time-sensitive and/or safety-critical applications that are not served well by on-demand RA. Finally, we show that ERASMUS is a promising stepping stone towards handling attestation of multiple devices (i.e., a group or swarm) with high mobility

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed

    Summary of the Active Microwave Workshop, chapter 1

    Get PDF
    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications
    corecore