43,298 research outputs found

    Development of new all-optical signal regeneration technique

    Get PDF
    All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power

    Detailed design of a resonantly-enhanced axion-photon regeneration experiment

    Get PDF
    A resonantly-enhanced photon-regeneration experiment to search for the axion or axion-like particles is described. This experiment is a shining light through walls study, where photons travelling through a strong magnetic field are (in part) converted to axions; the axions can pass through an opaque wall and convert (in part) back to photons in a second region of strong magnetic field. The photon regeneration is enhanced by employing matched Fabry-Perot optical cavities, with one cavity within the axion generation magnet and the second within the photon regeneration magnet. Compared to simple single-pass photon regeneration, this technique would result in a gain of (F/pi)^2, where F is the finesse of each cavity. This gain could feasibly be as high as 10^(10), corresponding to an improvement in the sensitivity to the axion-photon coupling, g_(agg), of order (F/pi)^(1/2) ~ 300. This improvement would enable, for the first time, a purely laboratory experiment to probe axion-photon couplings at a level competitive with, or superior to, limits from stellar evolution or solar axion searches. This report gives a detailed discussion of the scheme for actively controlling the two Fabry-Perot cavities and the laser frequencies, and describes the heterodyne signal detection system, with limits ultimately imposed by shot noise.Comment: 10 pages, 5 figure

    Experimental probes of axions

    Full text link
    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.Comment: 6 pages, 7 figures, proceedings of XXIX Physics in Collision Conference, Kobe, Japan, August 30-September 2, 2009. An incorrect file was accidentally submitted as V1. V2 is the version in the actual proceedings. Difference: axion-fermion scattering is always suppressed by the Yukawa coupling m_f/f_a. High kinetic energies do not overcome this suppressio

    All-optical 2R regeneration using the hysteresis in a distributed feedback laser diode

    Get PDF
    A broadband optical 2R regenerator based on a single distributed feedback laser is demonstrated for nonreturn to zero signals at a bitrate of 10 Gb/s. A semi-analytical approach for the influence of hysteresis on the transfer function of a 2R regenerator is shown

    Notes from the 3rd Axion Strategy Meeting

    Full text link
    In this note we briefly summarize the main future targets and strategies for axion and general low energy particle physics identified in the "3rd axion strategy meeting" held during the AXIONS 2010 workshop. This summary follows a wide discussion with contributions from many of the workshop attendees.Comment: 5 pages, 1 figur
    • …
    corecore