636 research outputs found

    Developing novel fluorescent probe for peroxynitrite: implication for understanding the roles of peroxynitrite and drug discovery in cerebral ischemia reperfusion injury

    Get PDF
    Session 7 - Oral PresentationsSTUDY GOAL: Peroxynitrite (ONOO‐) is a cytotoxic factor. As its short lifetime, ONOO‐ is hard to be detected in biological systems. This study aims to develop novel probe for detecting ONOO‐ and understand the roles of ONOO‐ in ischemic brains and drug discovery ABSTRACT: MitoPN‐1 was found to be a ONOO‐ specific probe with no toxicity. With MitoPN‐1, we studied the roles of ONOO‐ in hypoxic neuronal cells in vitro and MCAO …postprin

    Optical imaging and spectroscopy for the study of the human brain: status report.

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    Optical imaging and spectroscopy for the study of the human brain: status report

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    Optical imaging and spectroscopy for the study of the human brain: status report

    Full text link
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions. Keywords: DCS; NIRS; diffuse optics; functional neuroscience; optical imaging; optical spectroscop

    Wearable, high-density fNIRS and diffuse optical tomography technologies: a perspective

    Get PDF
    Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology

    Intravascular Fluorescence lifetime characterization of Atherosclerosis

    Get PDF
    Fluorescence lifetime imaging (FLIm) provides a biochemical signature of tissue based on autofluorescence properties. Here, we developed an integrated FLIm-IVUS imaging catheter system, suitable for the interrogation of coronary arteries in vivo. This includes adapting a pulse sampling acquisition scheme to enable co-registered FLIm-IVUS acquisition and designing, fabricating and testing a motor drive unit and low profile FLIm-IVUS catheter. The ability of this instrument to acquire robust FLIm data in coronary arteries in vivo using conventional percutaneous coronary intervention techniques was evaluated in swine model. Imaging of ex vivo human samples confirmed the benefit of additional accurately co-registered spectroscopic data to IVUS for improved lesion characterization. Optimization of optical and mechanical performance of the catheter was achieved with the development of a monolithic freeform reflective optics that enables improvements in collection efficiency, and lateral resolution in a compact, fluorescence background free element [P2]. Finally, a pilot comparative imaging study of ex vivo human artery samples was performed using the pulse sampling FLIm data acquisition technique, combined with Raman spectroscopy, by means of a bimodal forward-viewing optical probe. Methods were developed for the automated analysis of FLIm contrast sources using Raman spectroscopy data. The development of dedicated intravascular instrumentation combined with further understanding of the information provided by FLIm will improve the relevance of FLIm as a practical tool for the investigation of atherosclerosis. Future work will focus on regulatory activities to enable studies in human subjects, where the ability of FLIm to provide the biochemical signature of lesions in vivo may be leveraged to improve understanding of the disease natural history, develop new drugs, and possibly be used in clinical settings to improve patient treatment

    Recent Advances and Future Trends in Nanophotonics

    Get PDF
    Nanophotonics has emerged as a multidisciplinary frontier of science and engineering. Due to its high potential to contribute to breakthroughs in many areas of technology, nanophotonics is capturing the interest of many researchers from different fields. This Special Issue of Applied Sciences on “Recent advances and future trends in nanophotonics” aims to give an overview on the latest developments in nanophotonics and its roles in different application domains. Topics of discussion include, but are not limited to, the exploration of new directions of nanophotonic science and technology that enable technological breakthroughs in high-impact areas mainly regarding diffraction elements, detection, imaging, spectroscopy, optical communications, and computing
    corecore